INTERNATIONAL ISO/IEC
STANDARD 30170

First edition
2012-04-15

Information technology — Programming
languages — Ruby

Technologies de l'information — Langages de programmation — Ruby

Reference number
ISO/IEC 30170:2012(E)

©|SO/IEC 2012

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Contents Page
1 SCOPE .« o o e e 1
2 Normative references 1
3 Conformance e e 1
4 Terms and definitions e 2
5 Notational conventions 4
5.1 General description 4
5.2 SYNEAX .« .« .« v o e 4
5.2.1 General description 4

5.2.2 Productions 5

5.2.3 Syntactic term sequences 6

5.2.4 Syntactic termso 7

5.2.5 Conceptual names 10

5.3 Semantics L e e 10
5.4 Attributes of execution contexts L ... 11

6 Fundamental concepts L 12
6.1 Objects o e 12
6.2 Variables e e 12
6.2.1 General description 12

6.2.2 Instance variables o 13

6.3 Methods e 13
6.4 Blocks 14
6.5 Classes, singleton classes, and modules 14
6.5.1 General description L 14

6.5.2 Classes v o e e 14

6.5.3 Singleton classes 15

6.5.4 Inheritance 16

6.5.5 Modules 17

6.6 Boolean values 18

7 Execution contexts L 18
7.1 General description 18
7.2 The initial state 19

8 Lexical structure 19
8.1 General descriptiono 19
8.2 Program texto 20
8.3 Line terminators e 20
8.4 Whitespace 21
8.5 Comments e e e e e 22
8.6 End-of-program markerso 23
8.7 Tokens e e 23
8.7.1 General description 23

8.7.2 Keywords o 23

8.7.3 Identifiers 24

8.7.4 Punctuatorso 25

8.7.5 Operators e 25
©ISO/IEC 2012 — All rights reserved iii

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

8.7.6 Literals 26
8.7.6.1 General description Lo 26
8.7.6.2 Numeric literals 26
8.7.6.3 String literals o 29

8.7.6.3.1 General description Lo L Lo 29

8.7.6.3.2 Single quoted strings Lo 29

8.7.6.3.3 Double quoted strings 30

8.7.6.3.4 Quoted non-expanded literal strings 33

8.7.6.3.5 Quoted expanded literal strings 35

8.7.6.3.6 Here documents o oL 36

8.7.6.3.7 External command execution Lo 38

8.7.6.4 Array literals 39

8.7.6.5 Regular expression literals 42

8.7.6.6 Symbol literals 43

9 Scope of variables Lo 44
9.1 General description 44
9.2 Scope of local variableso oL Lo 44
9.3 Scope of global variables o 45

10 Program structure L 45
10.1 Program L e 45
10.2 Compound statement 46

11 EXpPressions o i oo e e e e e e e 47
11.1 General description 47
11.2 Logical expressions L 47

11.2.1 General description 47

11.2.2 Logical NOT expressions 48

11.2.3 Logical AND expressions 49

11.2.4 Logical OR expressions 49

11.3 Method invocation expressionso 50

11.3.1 General description 50

11.3.2 Method argumentso 55

11.3.3 Blocks e 58

11.3.4 The super expressiono 61

11.3.5 The yield expression 64

11.4 Operator expressions o . o 65

11.4.1 General description 65

11.4.2 Assignments 66
11.4.2.1 General description 66
11.4.2.2 Single assignmentso oo 66

11.4.2.2.1 General description Lo 66
11.4.2.2.2 Single variable assignments 67
11.4.2.2.3 Scoped constant assignments 69
11.4.2.2.4 Single indexing assignments L. 69
11.4.2.2.5 Single method assignments 70
11.4.2.3 Abbreviated assignments 71
11.4.2.3.1 General description L Lo 71
11.4.2.3.2 Abbreviated variable assignments 71
11.4.2.3.3 Abbreviated indexing assignments 72
11.4.2.34 Abbreviated method assignments 73
11.4.2.4 Multiple assignments Lo 74

iv

This standard was downloaded from the normsplash.com

©ISO/IEC 2012 — All rights reserved

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.4.2.5 Assignments with rescue modifiers 78
11.4.3 Unary operator eXpressions v v v v v v v i 78
11.4.3.1 General description Lo 78
11.4.3.2 The defined? expression 79
11.4.4 Binary operator eXpressionso e e 81
11.5 Primary expressions o 84
11.5.1 General description Lo Lo 84
11.5.2 Control structures L 85
11.5.2.1 General description L Lo 85
11.5.2.2 Conditional expressions 85
11.5.2.2.1 General description o oL 85
11.5.2.2.2 The if expression oo 85
11.5.2.2.3 The unless expression 87
11.5.2.2.4 The case expression oo 87
11.5.2.2.5 Conditional operator expression 88
11.5.2.3 Iteration expressions« . o oo 39
11.5.2.3.1 General description Lo 89
11.5.2.3.2 The while expression oo 90
11.5.2.3.3 The until expression 91
11.5.2.3.4 The for expression 91
11.5.2.4 Jump expressions oo e 92
11.5.2.4.1 General description oo Lo 92
11.5.2.4.2 The return expression 93
11.5.2.4.3 The break expression 94
11.5.2.4.4 The next expression oo 95
11.5.2.4.5 The redo expression 96
11.5.2.4.6 The retry expression 97
11.5.2.5 The begin expression 97
11.5.3 Grouping expression 99
11.5.4 Variable references 99
11.5.4.1 General description L Lo 99
11.5.4.2 Constants 100
11.5.4.3 Scoped constants 101
11.5.4.4 Global variables 101
11.5.4.5 Class variables e 102
11.5.4.6 Instance variables o o 102
11.5.4.7 Local variables or method invocations 102
11.5.4.7.1 General description L Lo 102
11.5.4.7.2 Determination of the type of local variable identifiers 103
11.5.4.7.3 Local variables L 103
11.5.4.7.4 Method invocations oo oL 104
11.5.4.8 Pseudo variables L Lo 104
11.5.4.8.1 General description Lo 104
11.5.4.8.2 The nil expression o 104
11.5.4.8.3 The true expression and the false expression 104
11.5.4.8.4 The self expression 105

11.5.5 Object constructors 105
11.5.5.1 Array constructor 105
11.5.5.2 Hash constructor o 105
11.5.5.3 Rangeexpression L L oo 106

12 Statements L e 107
12.1 General description. Lo L 107
©ISO/IEC 2012 — All rights reserved v

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

13

14

15

vi

12.2 Expression statement Lo Lo o 107
12.3 The if modifier statement 108
12.4 The unless modifier statement 108
12.5 The while modifier statement 108
12.6 The until modifier statement, 109
12.7 The rescue modifier statement 109
Classes and modules e 110
13.1 Modules e e e e e 110
13.1.1 General description 110
13.1.2 Module definition 111
13.1.3 Module inclusion 112
13.2 Classes o o o e s 112
13.2.1 General description L Lo 112
13.2.2 Class definition 112
13.2.3 Imheritanceo 114
13.2.4 Instance creationo 114
13.3 Methods e 115
13.3.1 Method definition 115
13.3.2 Method parameters 116
13.3.3 Method invocation 118
13.3.4 Method lookup 120
13.3.5 Method visibilityo 121
13.3.5.1 General description Lo 121
13.3.5.2 Public methods 121
13.3.5.3 Private methods 121
13.3.5.4 Protected methods 121
13.3.5.5 Visibility change 122

13.3.6 The alias statement 122
13.3.7 The undef statement 123
13.4 Singleton classes L oL 124
13.4.1 General description 124
13.4.2 Singleton class definition L 125
13.4.3 Singleton method definition 126
Exceptions e e 127
14.1 General description 127
14.2 Cause of exceptions e 127
14.3 Exception handling o 127
Built-in classes and moduleso 128
15.1 General description. 128
15.2 Built-in classes 131
15.2.1 Object e 131
15.2.1.1 General descriptiono 131
15.2.1.2 Direct superclass 131
15.2.1.3 Included modules 131
15.2.1.4 Constants 131
15.2.1.5 Instance methods 132
15.2.1.5.1 Object#initialize L 132

15.2.2 Module 132
15.2.2.1 General description 132
15.2.2.2 Direct superclasso 132

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.2.3 Singleton methodso 132
15.2.2.3.1 Module.constantso oL 132
15.2.2.3.2 Modulemesting L 133

15.2.2.4 Instance methods 133
15.2.2.4.1 Module#<=> 133
15.2.2.4.2 Module#< o o 134
15.2.2.4.3 Module#<= 134
15.2.2.4.4 Module#> o . 134
15.2.2.4.5 Module#>= 135
15.2.2.4.6 Module#== 135
15.2.2.4.7 Module#=== 135
15.2.2.4.8 Module#alias_method, 135
15.2.2.4.9 Module#ancestors 136
15.2.2.4.10 Module#append_featureso 136
15.2.2.4.11 Module#attr 136
15.2.2.4.12 Module#attr_accessoro oL 137
15.2.2.4.13 Module#attrreader o oL 137
15.2.2.4.14 Module#attr_writer Lo 138
15.2.2.4.15 Module#classeval o Lo 138
15.2.2.4.16 Module#class_variable_defined? 139
15.2.2.4.17 Module#class_variable.get 140
15.2.2.4.18 Module#class_variableset 140
15.2.2.4.19 Module#class_variables 140
15.2.2.4.20 Module#const_defined? 141
15.2.2.4.21 Module#const_geto 142
15.2.2.4.22 Module#const_missing 142
15.2.2.4.23 Module#constset oL 143
15.2.2.4.24 Module#constantso L oo 143
15.2.2.4.25 Module#extend_object L. 144
15.2.2.4.26 Module#extendedo 144
15.2.2.4.27 Module#include L o 144
15.2.2.4.28 Module#include?o Lo 145
15.2.2.4.29 Module#included oL 145
15.2.2.4.30 Module#included_modules 145
15.2.2.4.31 Module#initialize L. 145
15.2.2.4.32 Module#initialize copy Lo 146
15.2.2.4.33 Module#instance_methods 147
15.2.2.4.34 Module#method_defined? 147
15.2.2.4.35 Module#module.eval L. 148
15.2.2.4.36 Module#private oo 148
15.2.2.4.37 Module#protectedo 148
15.2.2.4.38 Module#public o oL 148
15.2.2.4.39 Module#remove_class_variable 149
15.2.2.4.40 Module#removeconst 150
15.2.2.4.41 Module#remove_method 150
15.2.2.4.42 Module#undef method, 151

15.2.3 Class o o e 151

15.2.3.1 General description 151

15.2.3.2 Direct superclasso 151

15.2.3.3 Instance methods L. 151
15.2.3.3.1 Class#initialize oL 151
15.2.3.3.2 Class#tinitialize_copy 152

©ISO/IEC 2012 — All rights reserved vii

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.3.3.3 Class#new 152
15.2.3.3.4 Class#superclass o e 153
15.2.4 NilClass e e e 153
15.2.4.1 General description 153
15.2.4.2 Direct superclasso 153
15.2.4.3 Instance methods 153
15.2.4.3.1 NilClass#& . . .« o v e e e 153
15.2.4.3.2 NilClass#E | . . . o o o o 154
15.2.4.3.3 NilClass#™ . . . o o o o e 154
15.2.4.3.4 NilClass#nil? o 154
15.2.4.3.5 NilClass#to.S . . . o o v o e e 154
15.2.5 TrueClass o o 154
15.2.5.1 General description Lo 154
15.2.5.2 Direct superclass 155
15.2.5.3 Instance methods 155
15.2.5.3.1 TrueClass#& 155
15.2.5.3.2 TrueClass#| o 155
15.2.5.3.3 TrueClass#™ e 155
15.2.5.3.4 TrueClass#tos o L 155
15.2.6 FalseClass oL 156
15.2.6.1 General descriptiono 156
15.2.6.2 Direct superclass 156
15.2.6.3 Instance methodso 156
15.2.6.3.1 FalseClass#& 156
15.2.6.3.2 FalseClass#| o . oo o o 156
15.2.6.3.3 FalseClass#" 156
15.2.6.3.4 FalseClass#tos 157
15.2.7 Numeric L 157
15.2.7.1 General descriptiono L Lo 157
15.2.7.2 Direct superclasso 157
15.2.7.3 Included modules Lo 157
15.2.7.4 Instance methodso 157
15.2.7.4.1 Numeric#+Q e 157
15.2.7.4.2 Numeric#—Q 158
15.2.7.4.3 Numeric#abs 158
15.2.7.4.4 Numeric#coerce o .o oo 158
15.2.8 Integer 159
15.2.8.1 General descriptiono 159
15.2.8.2 Direct superclasso 160
15.2.8.3 Imstance methods Lo 160
15.2.8.3.1 Integer#<=> 160
15.2.8.3.2 Integer#== 160
15.2.8.3.3 Integer#+ L 161
15.2.8.3.4 Integer#— o 161
15.2.8.3.5 Integer#™* 162
15.2.8.3.6 Imteger#/. 162
15.2.8.3.7 Integer#% 163
15.2.8.3.8 Integer#™o 164
15.2.8.3.9 Integer#& L 164
15.2.8.3.10 Integer#£| 164
15.2.8.3.11 Integer#~ 165
15.2.8.3.12 Integer#<< 165

viii

This standard was downloaded from the normsplash.com

©ISO/IEC 2012 — All rights reserved

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.8.3.13 Integer#>> 165
15.2.8.3.14 Integerceil Lo 165
15.2.8.3.15 Integer#tdownto 166
15.2.8.3.16 Integer#eql? 166
15.2.8.3.17 Imnteger#floor 166
15.2.8.3.18 Imteger#hash 167
15.2.8.3.19 Integer#mext 167
15.2.8.3.20 Integer#round 167
15.2.8.3.21 Integer#succ 167
15.2.8.3.22 Integer#times 167
15.2.8.3.23 Imteger#tof 168
15.2.8.3.24 Integer#todi 168
15.2.8.3.25 Integer#tos 168
15.2.8.3.26 Integer#truncate 169
15.2.8.3.27 Integer#upto 169
15.2.9 Float 169
15.2.9.1 General description 169
15.2.9.2 Direct superclasso 170
15.2.9.3 Instance methods L oL 170
15.2.9.3.1 Float#<=> 170
15.2.9.3.2 Float#== 170
15.2.9.3.3 Float#+ 171
15.2.9.3.4 Float#— e 172
15.2.9.3.5 Float#* 172
15.2.9.3.6 Float#/ 173
15.2.9.3.7 Float#% e 173
15.2.9.3.8 Float#ceil o 174
15.2.9.3.9 Float#finite? 174
15.2.9.3.10 Float#floor o 175
15.2.9.3.11 Float#infinite? o 175
15.2.9.3.12 Float#round 175
15.2.9.3.13 Float#tof 175
15.2.9.3.14 Float#todi 175
15.2.9.3.15 Float#truncate 176
15.2.10 String e 176
15.2.10.1 General descriptiono Lo 176
15.2.10.2 Direct superclasso o 176
15.2.10.3 Included modules Lo 176
15.2.10.4 Upper-case and lower-case characters 177
15.2.10.5 Instance methodso oL 177
15.2.10.5.1 String#<=> 177
15.2.10.5.2 String#== 178
15.2.10.5.3 String#=" e 178
15.2.10.5.4 String#+4 179
15.2.10.5.5 String#™* 179
15.2.10.5.6 String#[] 179
15.2.10.5.7 String#capitalize oL 181
15.2.10.5.8 String#capitalize! o Lo 181
15.2.10.5.9 String#chomp o Lo 181
15.2.10.5.10 String#chomp! Lo 182
15.2.10.5.11 String#chopo 182
15.2.10.5.12 String#chop!o 182
©ISO/IEC 2012 — All rights reserved ix

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.10.5.13 String#downcaseo 183
15.2.10.5.14 String#downcase!o oL 183
15.2.10.5.15 String#each line o 0oL 183
15.2.10.5.16 String#empty?o 184
15.2.10.5.17 String#eql? 184
15.2.10.5.18 String#gsubo 184
15.2.10.5.19 String#gsub! 186
15.2.10.5.20 String#hash Lo oo 186
15.2.10.5.21 String#include? Lo oL 186
15.2.10.5.22 String#index 187
15.2.10.5.23 String#initialize oL 187
15.2.10.5.24 String#initialize copy L. 188
15.2.10.5.25 String#intern Lo 188
15.2.10.5.26 String#length oo Lo 188
15.2.10.5.27 String#match oo 188
15.2.10.5.28 String#replace L 189
15.2.10.5.29 String#reverseo 189
15.2.10.5.30 String#reverse! 189
15.2.10.5.31 String#rindex L oo 189
15.2.10.5.32 String#scan 190
15.2.10.5.33 String#size 191
15.2.10.5.34 String#sliceo 191
15.2.10.5.35 String#split 191
15.2.10.5.36 String#sub oL 193
15.2.10.5.37 String#sub! 193
15.2.10.5.38 String#tof 194
15.2.10.5.39 String#tod 194
15.2.10.5.40 String#to-s 195
15.2.10.5.41 String#to-sym 195
15.2.10.5.42 String#upcase 195
15.2.10.5.43 String#upcase! 196
15.2.11 Symbol 196
15.2.11.1 General description L Lo 196
15.2.11.2 Direct superclasso 196
15.2.11.3 Instance methods 196
15.2.11.3.1 Symbol#=== 196
15.2.11.3.2 Symbol#id2name 197
15.2.11.3.3 Symbol#tos 197
15.2.11.3.4 Symbol#tosym Lo 197
15.2.12 Array 197
15.2.12.1 General descriptiono 197
15.2.12.2 Direct superclass e 198
15.2.12.3 Included modules L oo 198
15.2.12.4 Singleton methods oo 198
15.2.12.4.1 Array.]] 198
15.2.12.5 Instance methods 198
15.2.12.5.1 Array#+ e 198
15.2.12.5.2 Array#™* 199
15.2.12.5.3 Array#<<o 199
15.2.12.5.4 Array#[] 199
15.2.12.5.5 Array#[]= 200
15.2.12.5.6 Array#clear Lo 201

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.12.5.7 Array#collect! 201
15.2.12.5.8 Array#concat 201
15.2.12.5.9 Array#deleteat 202
15.2.12.5.10 Array#each 202
15.2.12.5.11 Array#eachindex 202
15.2.12.5.12 Array#empty? 203
15.2.12.5.13 Array#firsto 203
15.2.12.5.14 Array#indexo 204
15.2.12.5.15 Array#initialize 204
15.2.12.5.16 Array#initialize copyo 205
15.2.12.5.17 Array#joino 205
15.2.12.5.18 Array#last 206
15.2.12.5.19 Array#length oo 206
15.2.12.5.20 Array#map! 207
15.2.12.5.21 Array#pop - - - o e e e e e e e 207
15.2.12.5.22 Array#push 207
15.2.12.5.23 Array#replace 207
15.2.12.5.24 Array#reverseo 207
15.2.12.5.25 Array#reverse!o 208
15.2.12.5.26 Array#rindex 208
15.2.12.5.27 Array#shifto 208
15.2.12.5.28 Array#sizeo 209
15.2.12.5.29 Array#slice. 209
15.2.12.5.30 Array#unshift oo 209
15.2.13 Hash 209
15.2.13.1 General description 209
15.2.13.2 Direct superclasso 210
15.2.13.3 Included modules Lo 210
15.2.13.4 Instance methods Lo 210
15.2.13.4.1 Hash#== 210
15.2.13.4.2 Hash#[] 211
15.2.13.4.3 Hash#[|=. 211
15.2.13.4.4 Hash#clearo 212
15.2.13.4.5 Hash#default, 212
15.2.13.4.6 Hash#default= 212
15.2.13.4.7 Hash#default proc, 213
15.2.13.4.8 Hash#delete L 213
15.2.13.4.9 Hash#each 213
15.2.13.4.10 Hash#each key 214
15.2.13.4.11 Hash#eachvalue 214
15.2.13.4.12 Hash#empty? 214
15.2.13.4.13 Hash#has key? 215
15.2.13.4.14 Hash#has value?, 215
15.2.13.4.15 Hash#include? 215
15.2.13.4.16 Hash#initialize 0000 215
15.2.13.4.17 Hash#initializecopy 216
15.2.13.4.18 Hash#key? e 216
15.2.13.4.19 Hash#keys e 216
15.2.13.4.20 Hash#length L. 217
15.2.13.4.21 Hash#member? 217
15.2.13.4.22 Hash#merge e 217
15.2.13.4.23 Hash#replace o o 218
©ISO/IEC 2012 — All rights reserved xi

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.13.4.24 Hash#shifto o o 218
15.2.13.4.25 Hash#tsize e 218
15.2.13.4.26 Hash#store 219
15.2.13.4.27 Hash#value? 219
15.2.13.4.28 Hash#values 219
15.2.14 Rangeo 219
15.2.14.1 General description oL o o 219
15.2.14.2 Direct superclass L 219
15.2.14.3 Included modules Lo 220
15.2.14.4 Instance methodso Lo 220
15.2.14.41 Range#==. e 220
15.2.14.4.2 Range#=== 220
15.2.14.4.3 Range#begin.o 221
15.2.14.4.4 Range#each Lo 221
15.2.14.45 Range#end e 222
15.2.14.4.6 Range#exclude.end? 222
15.2.14.4.7 Range#firsto 222
15.2.14.4.8 Range#include? oL 222
15.2.14.4.9 Range#initialize Lo 222
15.2.14.4.10 Range#lasto 223
15.2.14.4.11 Range#member? oo 223
15.2.15 Regexp . . . o o o o e 223
15.2.15.1 General descriptiono 223
15.2.15.2 Direct superclass e 224
15.2.15.3 Constantso 224
15.2.15.4 Patterns. 224
15.2.15.5 Matching process 228
15.2.15.6 Singleton methods oo 229
15.2.15.6.1 Regexp.compile oL 229
15.2.15.6.2 Regexp.escapeo oo 229
15.2.15.6.3 Regexp.Jast.match oL 230
15.2.15.6.4 Regexp.quote Lo 231
15.2.15.7 Instance methodso o 231
15.2.15.7.1 RegexpH#== 231
15.2.15.7.2 RegexpH#=== 231
15.2.15.7.3 Regexp#=" e 232
15.2.15.7.4 Regexp#casefold? 232
15.2.15.7.5 Regexp#initialize oL 233
15.2.15.7.6 Regexp#initialize copy 233
15.2.15.7.7 Regexp#match Lo 234
15.2.15.7.8 Regexp#sourceo e 234
15.2.16 MatchData Lo 234
15.2.16.1 General descriptiono 234
15.2.16.2 Direct superclass 235
15.2.16.3 Instance methodso 235
15.2.16.3.1 MatchData#[. 235
15.2.16.3.2 MatchData#begin oL 235
15.2.16.3.3 MatchDataf#captures 235
15.2.16.3.4 MatchData#tend oL 236
15.2.16.3.5 MatchData#initialize copy 236
15.2.16.3.6 MatchData#length, 237
15.2.16.3.7 MatchData#offset oL 237
xii ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

15.2.17 Proc
15.2.17.1

15.2.17.4

15.2.18 Struct
15.2.18.1

15.2.18.4

15.2.19 Time
15.2.19.1

15.2.19.7

ISO/IEC 30170:2012(E)

15.2.16.3.8 MatchData#post_match, 237
15.2.16.3.9 MatchData#prematch 237
15.2.16.3.10 MatchData#tsize oL 238
15.2.16.3.11 MatchData#string 238
15.2.16.3.12 MatchData#toa. L. 238
15.2.16.3.13 MatchData#tos o 238
....................................... 239

General description Lo 239

15.2.17.2 Direct superclass 239
15.2.17.3 Singleton methods L. 239
15.2.17.3.1 Procmew 239
Instance methods 239

15.2.17.4.1 Proc#[] . . o« o 239
15.2.17.4.2 Procffarity 239
15.2.17.4.3 Proc#call 240
15.2.17.4.4 Procftclone 241
15.2.17.4.5 Proc#dup 241
...................................... 242

General description Lo 242

15.2.18.2 Direct superclass 242
15.2.18.3 Singleton methodso 242
15.2.18.3.1 Struct.new 242
Instance methods 244

15.2.18.4.1 Struct#==. e 244
15.2.18.4.2 Struct#[] 244
15.2.18.4.3 Struct#[|= 245
15.2.18.4.4 Struct#each o 246
15.2.18.4.5 Struct#each_pair L. 246
15.2.18.4.6 Struct#initialize oo oL 246
15.2.18.4.7 Struct#initialize.copy 247
15.2.18.4.8 Struct#memberso 247
15.2.18.4.9 Struct#select 247
...................................... 248

General descriptiono Lo 248

15.2.19.2 Direct superclass e 248
15.2.19.3 Time computation L Lo 248
15.2.19.3.1 Day e 248
15.2.19.3.2 Year e 249
15.2.19.3.3 Month 249
15.2.19.34 Daysofmonth L. 250
15.2.19.3.5 Hours, Minutes, and Seconds 250
15.2.19.4 Time zone and Local time00, 251
15.2.19.5 Daylight saving time L 251
15.2.19.6 Singleton methods oL 251
15.2.19.6.1 Time.at L 251
15.2.19.6.2 Time.gm 252
15.2.19.6.3 Time.local 254
15.2.19.6.4 Timemktime 254
15.2.19.6.5 Timenow 254
15.2.19.6.6 Time.utc L 254
Instance methods 255

15.2.19.7.1 Time#<=> o 255
©ISO/IEC 2012 — All rights reserved xiii

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.19.7.2 Time#+ o e 255
15.2.19.7.3 Time#— e 256
15.2.19.7.4 Time#asctime 256
15.2.19.7.5 Time#ctime 257
15.2.19.7.6 Time#day e 257
15.2.19.7.7 Time#dst? 257
15.2.19.7.8 Time#getgm 258
15.2.19.7.9 Time#getlocal Lo 258
15.2.19.7.10 Time#getutc 258
15.2.19.7.11 Time#gmt? 258
15.2.19.7.12 Time#gmt offset 258
15.2.19.7.13 Time#gmtime 259
15.2.19.7.14 Time#gmtoff L 259
15.2.19.7.15 Time#hour 259
15.2.19.7.16 Time#initialize 259
15.2.19.7.17 Time#initialize.copy 260
15.2.19.7.18 Time#localtime oL 260
15.2.19.7.19 Time#mday 260
15.2.19.7.20 Time#mino 261
15.2.19.7.21 Time#mon e 261
15.2.19.7.22 Time#month Lo 261
15.2.19.7.23 Time#sec o oo 261
15.2.19.7.24 Time#tof L 262
15.2.19.7.25 Time#tod e 262
15.2.19.7.26 Time#usec o o o e 262
15.2.19.7.27 Time#utc 262
15.2.19.7.28 Time#utc? e 263
15.2.19.7.29 Time#utcoffset 263
15.2.19.7.30 Time#wday 263
15.2.19.7.31 Time#yday 263
15.2.19.7.32 Time#year e 264
15.2.19.7.33 Time#zone 264
15.2.20 TO . . . L 264
15.2.20.1 General descriptiono 264
15.2.20.2 Direct superclass 265
15.2.20.3 Included moduleso 265
15.2.20.4 Singleton methods L oL 265
15.2.20.4.1 T0.0pen 265
15.2.20.5 Instance methods oL 266
15.2.20.5.1 IO#close 266
15.2.20.5.2 IO##closed? 266
15.2.20.5.3 IO#each 267
15.2.20.5.4 IO#each byte 267
15.2.20.5.5 IO#eachline e 268
15.2.20.5.6 IO#eof? 268
15.2.20.5.7 IO#flush 268
15.2.20.5.8 IO#getc 268
15.2.20.5.9 IO#gets e 269
15.2.20.5.10 IO#initialize_copy« . . o v oo 269
15.2.20.5.11 IO#print 269
15.2.20.5.12 IO#putc 270
15.2.20.5.13 IO#puts 270
xiv ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.20.5.14 IO#read e 271
15.2.20.5.15 IO#readchar 271
15.2.20.5.16 IO#readline 272
15.2.20.5.17 IO#readlines 272
15.2.20.5.18 TOF#sSync o o 273
15.2.20.5.19 IO#Sync= 273
15.2.20.5.20 IO#write L 273
15.2.21 File o 274
15.2.21.1 General description L o 274
15.2.21.2 Direct superclass o 274
15.2.21.3 Singleton methods Lo 274
15.2.21.3.1 File.exist? L 274
15.2.21.4 Instance methods 274
15.2.21.4.1 File#initialize oo L 274
15.2.21.4.2 File#path 275
15.2.22 Exception Lo 275
15.2.22.1 General descriptiono 275
15.2.22.2 Direct superclass 275
15.2.22.3 Singleton methods o oo 275
15.2.22.3.1 Exception.exception 275
15.2.22.4 Instance methodso 276
15.2.22.4.1 Exception#exception 276
15.2.22.4.2 Exception#tinitializeo 000 276
15.2.22.4.3 Exception#message oo 276
15.2.22.4.4 Exception#tos 277
15.2.23 StandardError 277
15.2.23.1 General descriptiono Lo Lo 277
15.2.23.2 Direct superclasso 277
15.2.24 ArgumentErroro 277
15.2.24.1 General descriptiono 277
15.2.24.2 Direct superclass 277
15.2.25 LocalJumpError 277
15.2.25.1 Direct superclass 278
15.2.25.2 Instance methodso 278
15.2.25.2.1 LocalJumpError#exit_value 278
15.2.25.2.2 LocalJumpError#reason 278
15.2.26 RangeError oL 278
15.2.26.1 General descriptiono oo 278
15.2.26.2 Direct superclass 278
15.2.27 RegexpError L 278
15.2.27.1 General descriptiono 278
15.2.27.2 Direct superclass e 278
15.2.28 RuntimeError. Lo 278
15.2.28.1 General description Lo 278
15.2.28.2 Direct superclasso 279
15.2.29 TypeError L 279
15.2.29.1 General description oL oL L o 279
15.2.29.2 Direct superclass L 279
15.2.30 ZeroDivisionError Lo 279
15.2.30.1 General descriptiono 279
15.2.30.2 Direct superclass 279
15.2.31 NameError 279
©ISO/IEC 2012 — All rights reserved XV

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.31.1 Direct superclass 279
15.2.31.2 Instance methods 279
15.2.31.2.1 NameError#initialize 279
15.2.31.2.2 NameError#name 280
15.2.32 NoMethodError L 280
15.2.32.1 Direct superclasso 280
15.2.32.2 Imnstance methods L Lo 280
15.2.32.2.1 NoMethodError#args 280
15.2.32.2.2 NoMethodError#initialize 280
15.2.33 IndexError e 281
15.2.33.1 General description L oL 281
15.2.33.2 Direct superclasso L 281
15.2.34 TOError e 281
15.2.34.1 General descriptiono 281
15.2.34.2 Direct superclass L 281
15.2.35 EOFError o 281
15.2.35.1 General description 281
15.2.35.2 Direct superclass 281
15.2.36 SystemCallError 281
15.2.36.1 General description Lo 281
15.2.36.2 Direct superclass o 281
15.2.37 ScriptError 281
15.2.37.1 General descriptiono 281
15.2.37.2 Direct superclass 282
15.2.38 SyntaxError 282
15.2.38.1 General description 282
15.2.38.2 Direct superclass oL 282
15.2.39 LoadError. e 282
15.2.39.1 General descriptiono oL 282
15.2.39.2 Direct superclass o 282
15.3 Built-inmodules Lo 282
15.3.1 Kernel e 282
15.3.1.1 General description L oL 282
15.3.1.2 Singleton methods Lo 282
15.3.1.2.1 Kernel. 282
15.3.1.2.2 Kernel.block_given? oo 283
15.3.1.2.3 Kerneleval 283
15.3.1.24 Kernel.global variables 283
15.3.1.2.5 Kernel.iterator? 284
15.3.1.2.6 Kernellambda oo 284
15.3.1.2.7 Kernel.local variables, 285
15.3.1.2.8 Kernelloop o 285
15.3.1.2.9 Kernel.p 285
15.3.1.2.10 Kernel.print 286
15.3.1.2.11 Kernel.puts 286
15.3.1.2.12 Kernel.raise 286
15.3.1.2.13 Kernel.require 287
15.3.1.3 Instance methods 288
15.3.1.3.1 Kernel#== 288
15.3.1.3.2 Kernel#=== 288
15.3.1.3.3 Kernel#* o . o 289
15.3.1.3.4 Kernel#_id__ 289

xvi ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.5 Kernel#_send__ o 289
15.3.1.3.6 Kernel#block_given? L. 289
15.3.1.3.7 Kernel#class 289
15.3.1.3.8 Kernel#clone 290
15.3.1.3.9 Kernel#dup 290
15.3.1.3.10 Kernel#eql? 291
15.3.1.3.11 Kernel#equal? 291
15.3.1.3.12 Kernel#eval L 291
15.3.1.3.13 Kernel#extend o 292
15.3.1.3.14 Kernel#global variables 292
15.3.1.3.15 Kernel#hash oo 292
15.3.1.3.16 Kernel#initialize copy 293
15.3.1.3.17 Kernel#inspect o 293
15.3.1.3.18 Kernel#instance.eval oo 293
15.3.1.3.19 Kernel#instanceof 7 L. 294
15.3.1.3.20 Kernel#instance_variable_defined? 294
15.3.1.3.21 Kernel#instance_variable_get 294
15.3.1.3.22 Kernel#instance_variableset 295
15.3.1.3.23 Kernel#instance_variables 295
15.3.1.3.24 Kernel#is.a? 295
15.3.1.3.25 Kernel#iterator? o 296
15.3.1.3.26 Kernel#kind of? 296
15.3.1.3.27 Kernel#lambdao 296
15.3.1.3.28 Kernel#local variables 296
15.3.1.3.29 Kernel#loop 297
15.3.1.3.30 Kernel#method_missing 297
15.3.1.3.31 Kernel#methods 297
15.3.1.3.32 Kernel#nil? 297
15.3.1.3.33 Kernel#objectid oL 298
15.3.1.3.34 Kernel#p o . 298
15.3.1.3.35 Kernel#print 298
15.3.1.3.36 Kernel#private_methods 298
15.3.1.3.37 Kernel#protected_methods 299
15.3.1.3.38 Kernel#publicmethods 299
15.3.1.3.39 Kernel#puts 300
15.3.1.3.40 Kernel#raise 300
15.3.1.3.41 Kernel#remove_instance_variable 300
15.3.1.3.42 Kernel#requireo 301
15.3.1.3.43 Kernel#respond_to? 301
15.3.1.3.44 Kernel#send L 301
15.3.1.3.45 Kernel#singleton_.methods 302
15.3.1.3.46 Kernel#tos 302
15.3.2 Enumerable Lo Lo 302
15.3.2.1 General description Lo 302
15.3.2.2 Imstance methodso 303
15.3.2.2.1 Enumerable#all? o 303
15.3.2.2.2 Enumerable#any?o 303
15.3.2.2.3 Enumerable#collect o L 303
15.3.2.2.4 Enumerable#detecto 304
15.3.2.2.5 Enumerable#each with_index 304
15.3.2.2.6 Enumerable#fentrieso 305
15.3.2.2.7 Enumerable#find oo 305
©ISO/IEC 2012 — All rights reserved xvii

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

xviil

15.3.3.1
15.3.3.2

15.3.2.2.8 Enumerable#find_all 000000 305
15.3.2.2.9 Enumerable#grep Lo 305
15.3.2.2.10 Enumerable#include?o 306
15.3.2.2.11 Enumerable#inject 306
15.3.2.2.12 Enumerable#map oo 307
15.3.2.2.13 Enumerable#max oo 307
15.3.2.2.14 Enumerable#member?o 308
15.3.2.2.15 Enumerable#min o000 308
15.3.2.2.16 Enumerable#partition 309
15.3.2.2.17 Enumerable#reject Lo 309
15.3.2.2.18 Enumerablef#select 310
15.3.2.2.19 Enumerable#sort oL 310
15.3.2.2.20 Enumerable#toa o Lo 311
Comparable 311
General description 311
Instance methods 311
15.3.3.2.1 Comparable#< 311
15.3.3.2.2 Comparable#<= 311
15.3.3.2.3 Comparable#> 312
15.3.3.2.4 Comparable#>= 312
15.3.3.2.5 Comparable#== 312
15.3.3.2.6 Comparable#tbetween? 313

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 30170 was prepared by the Japanese Industrial Standards Committee (as JIS X3017) and was
adopted, under a special “fast-track procedure”, by Joint Technical Committee ISO/IEC JTC 1,
Information technology, in parallel with its approval by the national bodies of ISO and IEC.

©ISO/IEC 2012 — All rights reserved xix

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Introduction

This International Standard is based upon a submission from the Japanese National Standards
Body called JIS X3017 “Programming Language Ruby”, registered and published in 2011.

Ruby is an object-oriented scripting language designed to be developer-friendly, productive and
intuitive. There is a continuing growth of interest in Ruby around the world, especially among
web application developers, while its use spans from web applications to private tools.

As the Ruby language grows and spreads, there is no globally agreed upon documented Ruby
specification. In order to avoid confusion as a result of diversification of usage and incompatibility
among implementations, the Japan Industry Standard is proposed as an international standard.

There are multiple Ruby implementations available. Many of them are distributed as open
source software. The implementation called “Matz Ruby Implementation (MRI)” has been
treated as a reference implementation insofar as virtually all implementers check compatibility
of their implementations by comparing them to MRI. Therefore, this specification of Ruby is
codified as a strict subset of MRI.

This International Standard specifies only core language features and core libraries which are
stable enough and common between MRI versions and compatible between existing implemen-
tations. There are two versions of MRI currently distributed and maintained: MRI 1.8, which
has been available since 2003 and MRI 1.9, which was released in 2010. Currently, MRI 1.8 is
more widely used than MRI 1.9. Use of MRI 1.9 will likely spread in the next several years. To
avoid future divergence, features which are planned or prospected to be changed are excluded
from this version of the specification, or it is clearly stated that the behavior of the features are
not specified. For example, this specification does not specify the handling of character type in
detail because it is planned to be changed in MRI 1.9 for full support of ISO/IEC 10646. The
full support of ISO/TEC 10646 is going to be standardized in a future version of this standard.
The library defined in this specification is limited to that which is commonly used or necessary
to write simple programs.

This International Standard introduces special notations and a concept called “Execution con-
text” in order to specify flexible syntax and dynamic semantics of the Ruby language as simple
as possible.

XX ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

INTERNATIONAL STANDARD ISO/IEC 30170:2012(E)

Information technology — Programming languages — Ruby

1 Scope
This International Standard specifies the syntax and semantics of the computer programming
language Ruby, and the requirements for conforming Ruby processors, strictly conforming Ruby

programs, and conforming Ruby programs.

This International Standard does not specify,

e the limit of size or complexity of a program text which a conforming processor evaluates,

e the minimal requirements of a data processing system that is capable of supporting a
conforming processor,

e the method for activating the execution of programs on a data processing system, and

e the method for reporting syntactic and runtime errors.

NOTE Execution of a Ruby program is to evaluate the program (see 10) by a Ruby processor.

2 Normative references
The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the

referenced document (including any amendments) applies.

e ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information
interchange.

e TEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

e ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

3 Conformance
A strictly conforming Ruby program shall

e use only those features of the language specified in this International Standard, and

©ISO/IEC 2012 — All rights reserved 1

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e not produce output dependent on any unspecified or implementation-defined behavior.

A conforming Ruby processor shall

e evaluate any strictly conforming programs as specified in this International Standard.

A conforming Ruby processor may

e evaluate a strictly conforming program in a different way from the one described in this
International Standard, if it does not change the behavior of the program; however, if the
program redefines any method or constant of a built-in class or module (see Clause 15),
the behavior of the program may be different from the one described in this International
Standard (see NOTE 2), and

e support syntax not described in this International Standard, and evaluate any programs
which use features not specified in this International Standard.

A conforming processor shall be accompanied by a document that defines all implementation-
defined behavior and all extensions not specified in this International Standard.

A conforming Ruby program is one that a conforming Ruby processor can evaluate.

A conforming program shall be accompanied by a document that defines expected behavior of
each implementation-defined behavior and extensions used in the program and not specified in
this International Standard, if these behaviors affect the output of the program.

NOTE 1 The description of expected behaviors can be replaced by the name of a conforming processor
which supports the expected behaviors.

NOTE 2 For example, a conforming processor may omit an invocation of a method of a built-in class or
module for optimization purpose, and do the same calculation as the method instead. In this case, even
if a program redefines the method, the behavior of the program might not change because the redefined
method might not actually be invoked.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply. Other terms are
defined where they appear in bold slant face or on the left side of a syntax rule.

4.1
block
procedure which is passed to a method invocation

4.2
class
object which defines the behavior of a set of other objects, called its instances

NOTE The behavior is a set of methods which can be invoked on an instance.

4.3
class variable
variable whose value is shared by all the instances of a class

2 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

4.4

constant

variable which is defined in a class or a module, and is accessible both inside and outside the
class or module

NOTE The value of a constant is ordinarily expected to remain unchanged during the execution of a
program, but this International Standard does not enforce this expectation.

4.5
exception
object which represents an exceptional event

4.6
global variable
variable which is accessible everywhere in a program

4.7
implementation-defined
behavior that possibly differs between implementations, but is defined for every implementation

4.8
instance method
method which can be invoked on all the instances of a class

4.9
instance variable
variable that exists in a set of variable bindings which every instance of an object has

4.10

local variable

variable which is accessible only in a certain scope introduced by a program construct such as
a method definition, a block, a class definition, a module definition, a singleton class definition,
or the top level of a program

4.11
method
procedure which, when invoked on an object, performs a set of computations on the object

4.12

method visibility

attribute of a method which determines the conditions under which a method invocation is
allowed

4.13
module
object which provides features to be included into a class or another module

4.14
object
computational entity which has a state and a behavior

©ISO/IEC 2012 — All rights reserved 3

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

NOTE The behavior of an object is a set of methods which can be invoked on the object.

4.15
singleton class
object which can modify the behavior of its associated object

NOTE A singleton class is ordinarily associated with a single object. However, a conforming processor
may associate a singleton class with multiple objects as described in 13.4.1.

4.16
singleton method
instance method of a singleton class

4.17

unspecified

behavior that possibly differs between implementations, and is not necessarily defined for every
implementation

4.18
variable
computational entity that refers to an object, which is called the value of the variable

4.19

variable binding
association between a variable and an object which is referred to by the variable

5 Notational conventions
5.1 General description

In this clause, the following terms are used:

a) sequence of A
A “sequence of A”, whose length is n, indicates a sequence whose n elements A, Ao, ...,
A, (n>0) are of the same kind A as follows: AjAs...A,. A sequence whose length is 0 is
called an empty sequence.

b) sequence of A separated by B
A “sequence of A separated by B”, whose length is n+ 1, indicates a sequence whose n + 1

elements Ag, A1, Ao, ..., A, (n>0) are of the same kind A and whose adjacent elements
are separated by By, B, ..., By, of the same kind B as follows: AgB1A1Bs... B, A,.

5.2 Syntax
5.2.1 General description

In this International Standard, the syntax of the Ruby language is specified by syntactic rules
which are a series of productions (see 5.2.2), and constraints of syntax written in a natural
language. Syntactic rules are given in some subclauses, and are entitled “Syntax”.

4 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

5.2.2 Productions

Each production is of the following form, where X is a nonterminal symbol [see 5.2.4 b)], and Y
is a sequence of syntactic term sequences (see 5.2.3) separated by a vertical line (|), and where
whitespace and newlines are used for the sake of readability:

XY

A production defines a set of sequences of characters represented by a nonterminal symbol X
as a union of sets represented by syntactic term sequences in Y. The production X :: Y is
therefore called “the production of X” or “the X production”. X is called the left hand side of
the production, and Y is called the right hand side of the production. The nonterminal symbol
X is said to directly refer to nonterminal symbols which appear in Y. A relationship that a
nonterminal symbol A refers to a nonterminal symbol B is defined recursively as follows:

e If A directly refers to B, then A refers to B;

e If A refers to a nonterminal symbol C, and if C refers to B, then A refers to B.

NOTE 1 A syntactic term represents a set of sequences of characters as described in 5.2.3.

In a constraint written in a natural language in a syntactic rule, or in a semantic rule (see
5.3), “X”, where X is a syntactic term sequence, indicates an element of the set of sequences
of characters represented by the syntactic term sequence X. Especially in the case that X is a
nonterminal symbol Y, “Y” indicates an element of the set of sequences of characters represented
by the nonterminal symbol, and “the nonterminal symbol Y” indicates the nonterminal symbol
itself. A sequence of characters represented by “Y” is also called “of the form Y.

When a nonterminal symbol Y directly refers to a nonterminal symbol Z, “Z of Y” indicates a
part of a sequence of characters represented by Y, which is represented by such Z.

NOTE 2 For example, a sequence z of characters represented by X whose production is “X :: Y 27
consists of a sequence y of characters represented by Y and a sequence z of characters represented by Z,
and £ = yz In this case, “Z of X” indicates z.

“Z in Y” indicates a part of a sequence of characters represented by Y, which is represented by
Z referred to by the nonterminal symbol Y.

“Each Z of Y” indicates a sequence of characters defined by the following a) to c):

a) This notation is used when Z appears in a primary term P (see 5.2.4), and the right hand
side of the production of Y contains zero or more repetitions of P [see 5.2.4)] (i.e., P*).

b) Let Y, (n>0) be the right hand side of the production of Y, where P* is replaced with a
sequence of Ps whose length is n. For any sequence y of characters represented by Y, there

exists ¢ such that a sequence of characters represented by Y; is y.

c) “Each Z of Y” indicates a part of y represented by Z which appears repeatedly in Y.

If the number of Z referred to by Y in productions in a subclause is only one, “Z” is used as a
short form of “Z of Y” or “Z in Y.

©ISO/IEC 2012 — All rights reserved 5

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

The nonterminal symbols input-element (see 8.1), program (see 10.1), and pattern (see 15.2.15.4)
are called start symbols.

EXAMPLE 1 The following example is the input-element production. This production means an input-
element is any of a line-terminator, whitespace, comment, end-of-program-marker, or token.

iput-element ::
line-terminator
| whitespace
| comment
| end-of-program-marker
| token

EXAMPLE 2 Y and Z are defined as follows:

Y =
Z (#27)"

a|b| (V)

In this case, for each following sequence of characters represented by Y, “each Z of Y” indicates each
underlined part.

a
a#b
a#b#a
(a#b)

a# (a#tb)#a
5.2.3 Syntactic term sequences

A syntactic term sequence is a sequence of syntactic terms (see 5.2.4). A syntactic term sequence
S, which is a sequence Ty To ... T, (n > 1), where T; (1 < i< n) is a syntactic term, represents
a set of all sequences of characters of the form #; 5 ...t,, where ¢; is any element of the set of
sequences of characters represented by T;. However, if T; is a special term, the meaning of ¢; is
defined in 5.2.4 d).

Line-terminators (see 8.3), whitespace (see 8.4), and comments (see 8.5) are used to separate
tokens (see 8.7), and are ordinarily ignored. Line-terminators, whitespace, and comments are
therefore omitted in the right hand side of productions except in Clause 8 and 15.2.15.4. That
is, in the right hand side of productions, the following syntactic term is omitted before and after
terms.

(line-terminator | whitespace | comment)*

6 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

However, a location where a line-terminator or whitespace shall not occur, or a location where
a line-terminator or whitespace shall occur is indicated by special terms: a forbidden term [see
5.2.4 d) 2)] or a mandatory term [see 5.2.4 d) 3)], respectively.

EXAMPLE The following example represents a sequence of characters: alias [a terminal symbol, see
5.2.4 a)], new-name, and aliased-name, in this order. However, there might be any number of line-
terminators, whitespace characters, and/or comments between these elements.

alias new-name aliased-name

5.2.4 Syntactic terms

A syntactic term represents a sequence of characters, or a constraint to a sequence of characters
represented by a syntactic term sequence which includes the syntactic term. A syntactic term
is any of the following a) to h). In particular, syntactic terms a) to c¢) are called primary terms.

NOTE Note that a syntactic term is specified recursively.

a) terminal symbol
A terminal symbol is shown in typewriter face. A terminal symbol represents a set whose
only element is a sequence of characters shown in typewriter face.

EXAMPLE 1 + represents a sequence of one character “+”. def represents a sequence of three
characters “def”.

b) nonterminal symbol
A nonterminal symbol is shown in #talic face. A nonterminal symbol represents a set of
sequences of characters defined by the production of the nonterminal symbol.

EXAMPLE 2 A binary-digit defined by the following production represents “0” or “1”.

binary-digit ::
0] 1

c) grouping term
A grouping term is a sequence of syntactic term sequences separated by a vertical line (|)
and enclosed by parentheses [()]. A grouping term represents a union of sets of sequences
of characters represented by syntactic term sequences in the grouping term.

EXAMPLE 3 The following example represents an alpha-numeric-character or a line-terminator.

(alpha-numeric-character | line-terminator)

©ISO/IEC 2012 — All rights reserved 7

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) special term
A special term is a text enclosed by square brackets ([]). A special term is any of the
following:

1) negative lookahead
The notation of a negative lookahead is [lookahead ¢ S], where S is a sequence of
terminal symbols separated by a comma (,) enclosed by curly brackets ({ }). A negative
lookahead represents a constraint that any sequence of characters in S shall not occur
just after the negative lookahead.

EXAMPLE 4 The following example means that an argument-without-parentheses shall not
begin with “{”:

argument-without-parentheses ::
[lookahead ¢ { { }] argument-list

2) forbidden term
The notation of a forbidden term is [no 7" here], where T is a primary term. A forbidden
term represents a constraint that no 7' shall occur there.

EXAMPLE 5 The following example means no line-terminator shall occur there.

[no line-terminator here]

3) mandatory term
The notation of a mandatory term is [T here], where T is a primary term. A mandatory
term represents a constraint that one or more T's shall occur there.

EXAMPLE 6 The following example means one or more line-terminators shall occur there.

[line-terminator here]

4) other special term
The notation of an other special term is [U], where U is a text which does not match
any of d) 1) to d) 3). This special term represents a set of sequences of characters rep-
resented by U, or a constraint represented by U to a sequence of characters represented
by a syntactic term sequence which includes this special term.

EXAMPLE 7 The following example means that a source-character is any character specified
in ISO/IEC 646:1991 IRV:

source-character ::
[any character in ISO/IEC 646:1991 IRV]

8 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

EXAMPLE 8 The following example means =begin shall occur at the beginning of a line.

[beginning of a line | =begin

e) optional term
An optional term is a primary term postfixed with a superscripted question mark (7).

An optional term represents a superset of the set represented by the primary term, which
has an empty sequence of characters as the only additional element.

EXAMPLE 9 The following example means that the block is optional.

block”

f) zero or more repetitions
A primary term postfixed with a superscripted asterisk (*) indicates zero or more repetitions
of the primary term. Zero or more repetitions represent a set of sequences of characters
whose elements are all sequences of any zero or more elements of the set represented by the
primary term.

EXAMPLE 10 The following example means a sequence of characters which consists of zero or
more elsif-clauses.

elsif-clause™

g) one or more repetitions
A primary term postfixed with a superscripted plus sign () indicates one or more repeti-
tions of the primary term. One or more repetitions represent a set of sequences of characters
whose elements are all sequences of any one or more elements of the set represented by the
primary term.

EXAMPLE 11 The following example means a sequence of characters which consists of one or
more when-clauses.

when-clause

h) exception term
An exception term is a sequences of a primary term P, the phrase but not, and another
primary term P,. An exception term represents a set of sequences of characters whose
elements are all elements of P; excluding all elements of Ps.

©ISO/IEC 2012 — All rights reserved 9

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

EXAMPLE 12 The following example represents a source-character but not a single-quoted-string-
meta-character.

source-character but not single-quoted-string-meta-character

5.2.5 Conceptual names

A nonterminal symbol (except start symbols) which is not referred to by any start symbol is
called a conceptual name. In the production of a conceptual name, ::= is used instead of :: to
distinguish conceptual names from other nonterminal symbols.

NOTE 1 In this International Standard, some semantically related nonterminal symbols are syntacti-
cally away from each other. Conceptual names are used to define names which organize such nonterminal
symbols [e.g., assignment (see 11.4.2]). Conceptual names are also used to define nonterminal symbols
used only in semantic rules [e.g., binary-operator (see 11.4.4)].

EXAMPLE 1 The following example defines the conceptual name assignment, which can be used to
mention either assignment-expression or assignment-statement.

assignment 1=
assignment-expression
| assignment-statement

5.3 Semantics

For syntactic rules, corresponding semantic rules are given in some subclauses, and are entitled
“Semantics”. In this International Standard, the behaviors of programs are specified by pro-
cesses evaluating the programs. The evaluation of a program construct, which is a sequence
of characters represented by a nonterminal symbol, usually results in a value, which is called
the (resulting) value of the program construct. Semantic rules specify the ways of evaluating
program constructs specified in corresponding syntactic rules, and the resulting values of the
evaluations.

The start of evaluation steps of a program construct described in semantic rules is called the
start of the evaluation of the program construct. The time when there is no evaluation step to
be taken for the program construct is called the end of the evaluation of the program construct.
If the evaluation of a program construct has started, and if the evaluation has not ended, the
program construct is said to be under evaluation.

If there is no semantic rule corresponding to a nonterminal symbol X, and if the right hand side
of the production of X is a sequence of other nonterminal symbols separated by a vertical line
(]), the semantic rule of X is defined by the semantic rules of other nonterminal symbols referred

to by X.

EXAMPLE 1 A wvariable (see 11.5.4) has the following production, and has no description of semantic
rules.

10 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

variable ::
constant-identifier
| global-variable-identifier
| class-variable-identifier
| instance-variable-identifier
| local-variable-identifier

In this case, the semantic rule of variable is defined by the semantic rule of constant-identifier, global-
variable-identifier, class-variable-identifier, instance-variable-identifier, or local-variable-identifier.

If there is more than one same nonterminal symbol in the right hand side of a production,
the nonterminal symbols have a subscript to distinguish them in semantic rules (e.g., operator-
expressiony), if necessary.

The semantic rule of a conceptual name describes the semantic rule of program constructs
which are elements of the set of sequences of characters represented by the conceptual name. In
semantic rules, “X”, where X is a conceptual name, indicates a program construct which is an
element of the set of sequences of characters represented by the nonterminal symbol X.

EXAMPLE 2 logical-AND-expression (see 11.2.3) has the following production.

logical-AND-expression ::=
keyword-AND-expression
| operator-AND-expression

Since logical-AND-expression is a conceptual name, a sequence of characters represented by a keyword-
AND-expression or operator-AND-expression never be recognized as a logical-AND-expression under
parsing process of a program text. However, keyword-AND-expression and operator-AND-expression
have similar semantic rules and they are described as the semantic rule of logical-AND-expression. In
semantic rules, “logical-AND-expression” indicates a program construct represented by a keyword-AND-
expression or operator-AND-expression.

5.4 Attributes of execution contexts

The names of the attributes of execution contexts (see 7.1) are enclosed in double square brackets

(ID-

EXAMPLE [self] is one of the attributes of execution contexts.

©ISO/IEC 2012 — All rights reserved 11

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

6 Fundamental concepts

6.1 Objects

An object has a state and a behavior. The state of an object is represented by the attributes
of the object. Every object has a set of bindings of instance variables (see 6.2.2) as one of its
attributes. Besides the set of bindings of instance variables, an object can have some other
attributes, depending on the class of the object. The behavior of an object is defined by a set
of methods (see 6.3) which can be invoked on that object. A method is defined in a class, a

singleton class, or a module (see 6.5).

Every value directly manipulated by a program is an object. All of the following values are
objects:

e A value which is referred to by a variable (see 6.2);
e A value which is passed to a method as an argument;
e A value which is returned by a method;

e A value which is returned as the result of evaluating an ezpression (see Clause 11), a
statement (see Clause 12), a compound-statement (see 10.2), or a program (see 10.1).

Other values are not objects, unless explicitly specified as objects.

NOTE Primitive values such as integers are also objects. For example, an integer literal (see 8.7.6.2)
evaluates to an object.

6.2 Variables
6.2.1 General description
A variable is denoted by a name, and refers to an object, which is called the value of the variable.
A variable itself is not an object. While a variable can refer to only one object at a time, an
object can be referred to by more than one variable at a time.
A variable is said to be bound to an object if the variable refers to the object. This association
of a variable with an object is called a variable binding. When a variable with name N is
bound to an object O, N is called the name of the binding, and O is called the value of the
binding.
There are five kinds of variables:
e instance variables (see 6.2.2), whose names are prefixed with single “@” (e.g., “@var”);
e constants (see 6.5.2), whose names begin with an uppercase character (e.g., “Const”);
e class variables (see 6.5.2), whose names are prefixed with “@@” (e.g., “@@var”);

W

e local variables (see 9.2), whose names begin with a lowercase character or “_” (e.g., “var”);

e global variables (see 9.3), whose names are prefixed with “$” (e.g., “$var”).

12 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Any variable can be bound to any kind of object.

EXAMPLE In the following program, first, the local variable x refers to an integer, then it refers to a
string, finally it refers to an array.

x = 123
x = "abc"
x = [1, 2, 3]

6.2.2 Instance variables

An object has a set of variable bindings. A variable whose binding is in this set is an instance
variable of that object. This set of bindings of instance variables represents a state of that
object.

An instance variable of an object is not directly accessible outside the object. An instance
variable is ordinarily accessed through methods called accessors outside the object. In this
sense, a set of bindings of instance variables is encapsulated in an object.

EXAMPLE In the following program, the value of the instance variable @value of an instance of the
class ValueHolder is initialized by the method initialize (see 15.2.3.3.1), and is accessed through the
accessor method value, and printed by the method puts of the module Kernel (see 15.3.1.2.11). Text
after # is a comment (see 8.5).

class ValueHolder
def initialize(value)
@value = value
end

def value
return Q@value
end
end

vh = ValueHolder.new(10) # initialize(10) is invoked.
puts vh.value

6.3 Methods

A method is a procedure which, when invoked on an object, performs a set of computations on
the object. A method itself is not an object. The behavior of an object is defined by a set of
methods which can be invoked on that object. A method has one or more (when aliased) names
associated with it. An association between a name and a method is called a method binding.
When a name N is bound to a method M, N is called the name of the binding, and M is called
the value of the binding. A name bound to a method is called the method name. A method
can be invoked on an object by specifying one of its names. The object on which the method is
invoked is called the receiver of the method invocation.

EXAMPLE In a method invocation obj.method(argl, arg2), obj is called the receiver, and method
is called the method name. See 11.3 for method invocation expressions.

Methods are described further in 13.3.

©ISO/IEC 2012 — All rights reserved 13

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

6.4 Blocks

A block is a procedure which is passed to a method invocation. The block passed to a method
invocation is called zero or more times in the method invocation.

A block itself is not an object. However, a block can be represented by an object which is an
instance of the class Proc (see 15.2.17).

EXAMPLE 1 In the following program, for each element of an array, the block “{ |i| puts i }” is
called by the method each of the class Array (see 15.2.12.5.10).

a=1[1, 2, 3]
a.each { |il| puts i }

EXAMPLE 2 In the following program, an instance of the class Proc which represents the block
“{ puts "abc" }” is created, and is called by the method call of the class Proc (see 15.2.17.4.3).

x = Proc.new { puts "abc" }
x.call

Blocks are described further in 11.3.3.
6.5 Classes, singleton classes, and modules
6.5.1 General description

Behaviors of objects are defined by classes, singleton classes, and modules. A class defines
methods shared by objects of the same class. A singleton class is associated to an object, and
can modify the behavior of that object. A module defines, and provides methods to be included
into classes and other modules. Classes, singleton classes, and modules are themselves objects,
which are dynamically created and modified at run-time.

6.5.2 Classes

A class is itself an object, and creates other objects. The created objects are called direct
instances of the class (see 13.2.4).

A class defines a set of methods which, unless overridden (see 13.3.1), can be invoked on all the
instances of the class. These methods are instance methods of the class.

A class is itself an object, and created by evaluation of a program construct such as a class-
definition (see 13.2.2). A class has two sets of variable bindings besides a set of bindings of
instance variables. The one is a set of bindings of constants. The other is a set of bindings of
class variables, which represents the state shared by all the instances of the class.

The constants, class variables, singleton methods and instance methods of a class are called the
features of the class.

EXAMPLE 1 The class Array (see 15.2.12) is itself an object, and can be the receiver of a method
invocation. An invocation of the method new on the class Array creates an object called a direct instance
of the class Array.

EXAMPLE 2 In the following program, the instance method push of the class Array (see 15.2.12.5.22)
is invoked on an instance of the class Array.

14 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a = Array.new
a.push(1l, 2, 3) # The value of a is changed to [1, 2, 3].

EXAMPLE 3 In the following program, the class X is defined by a class definition. The class variable
@Qa is shared by instances of the class X.

class X
@@a = "abc"

def print_a
puts @Qa
end

def set_a(value)
@Qa = value

end
end
x1 = X.new
x1l.print_a # prints abc
x2 = X.new
x2.set_a("def")
x2.print_a # prints def
x1.print_a # prints def

Classes are described further in 13.2.
6.5.3 Singleton classes

Every object, including classes, can be associated with at most one singleton class. The singleton
class defines methods which can be invoked on that object. Those methods are singleton methods
of the object.

e If the object is not a class, the singleton methods of the object can be invoked only on that
object.

e If the object is a class, singleton methods of the class can be invoked only on that class and
its subclasses (see 6.5.4).

A singleton class is created, and associated with an object by a singleton class definition (see
13.4.2) or a singleton method definition (see 13.4.3).

EXAMPLE 1 In the following program, the singleton class of x is created by a singleton class definition.
The method show is called a singleton method of x, and can be invoked only on x.

abc
n def n

X =

y

The definition of the singleton class of x
class << x
def show
puts self # prints the receiver
end
end

x.show # prints abc
y.show # raises an exception

©ISO/IEC 2012 — All rights reserved 15

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

EXAMPLE 2 In the following program, the same singleton method show as EXAMPLE 1 is defined
by a singleton method definition. The singleton class of x is created implicitly by the singleton method
definition.

x = "abc"

The definition of a singleton method of x
def x.show

puts self # prints the receiver
end

X .show

EXAMPLE 3 In the following program, the singleton method a of the class X is defined by a singleton
method definition.

class X
The definition of a singleton method of the class X
def X.a
puts "The method a is invoked."
end
end
X.a

NOTE Singleton methods of a class is similar to so-called class methods in other object-oriented lan-
guages because they can be invoked on that class.

Singleton classes are described further in 13.4.
6.5.4 Inheritance

A class has at most one single class as its direct superclass. If a class A has a class B as its
direct superclass, A is called a direct subclass of B.

All the classes in a program, including built-in classes, form a rooted tree called a class inher-
itance tree, where the parent of a class is its direct superclass, and the children of a class are
all its direct subclasses. There is only one class which does not have a superclass. It is the root
of the tree. All the ancestors of a class in the tree are called superclasses of the class. All the
descendants of a class in the tree are called subclasses of the class.

A class inherits constants, class variables, singleton methods, and instance methods from its
superclasses, if any (see 13.2.3). If an object C is a direct instance of a class D, C' is called an
instance of D and all its superclasses.

EXAMPLE The following program defines three classes: the class X, the class Y, and the class Z.

class X
end

class Y < X
end

class Z <Y
end

The class X is called the direct superclass of the class Y, and the class Y is called a direct subclass of the
class X. The class Y inherits features from the class X. The class X is called a superclass of the class Z, and

16 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

the class Z is called a subclass of the class X. The class Z inherits features from the class X and the class
Y. A direct instance of the class Z is called an instance of the class X, the class Y, and the class Z.

6.5.5 Modules

Multiple inheritance of classes is not permitted. That is, a class can have only one direct
superclass. However, features can be appended to a class from multiple modules by using
module inclusions.

A module is an object which has the same structure as a class except that it cannot create an
instance of itself and cannot be inherited. As with classes, a module has a set of bindings of
constants, a set of bindings of class variables, and a set of instance methods. Instance methods,
constants, and class variables defined in a module can be used by other classes, modules, and
singleton classes by including the module into them.

While a class can have only one direct superclass, a class, a module, or a singleton class can
include multiple modules. Instance methods defined in a module can be invoked on an instance
of a class which includes the module. A module is created by a module definition (see 13.1.2).

EXAMPLE The following example is not a strictly conforming Ruby program, because a class cannot
have multiple direct superclasses.

class Stream
end

class ReadStream < Stream
def read(n)
reads n bytes from a stream
end
end

class WriteStream < Stream
def write(str)
writes str to a stream
end
end

class ReadWriteStream < ReadStream, WriteStream
end

Instead, a class can include multiple modules. The following example uses module inclusion instead of
multiple inheritance.

class Stream
end

module Readable
def read(n); end
end

module Writable
def write(str); end
end

class ReadStream < Stream

include Readable
end

©ISO/IEC 2012 — All rights reserved 17

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

class WriteStream < Stream
include Writable

end

class ReadWriteStream
include Readable

include Writable
end

Modules are described further in 13.1.

6.6 Boolean values

An object is classified into either a trueish object or a falseish object.

Only false and nil are falseish objects. false is the only instance of the class FalseClass (see
15.2.6), to which a false-expression evaluates (see 11.5.4.8.3). nil is the only instance of the class

NilClass (see 15.2.4), to which a nil-expression evaluates (see 11.5.4.8.2).

Objects other than false and nil are classified into trueish objects. true is the only instance of
the class TrueClass (see 15.2.5), to which a true-expression evaluates (see 11.5.4.8.3).

7 Execution contexts
7.1 General description
An execution context is a set of attributes which affects evaluation of a program.

An execution context is not a part of the Ruby language. It is defined in this International
Standard only for the description of the semantics of a program. A conforming processor shall
evaluate a program producing the same result as if the processor acted within an execution
context in the manner described in this International Standard.

An execution context consists of a set of attributes as described below. FEach attribute of an
execution context except [global-variable-bindings] forms a stack. Attributes of an execution
context are changed when a program construct is evaluated.

The following are the attributes of an execution context:

[self] : A stack of objects. The object at the top of the stack is called the current self,
to which a self-expression evaluates (see 11.5.4.8.4).

[class-module-list] : A stack of lists of classes, modules, or singleton classes. The class or
module at the head of the list which is on the top of the stack is called the current class
or module.

[default-method-visibility]] : A stack of visibilities of methods, each of which is one of the
public, private, and protected visibilities. The top of the stack is called the current
visibility .

[local-variable-bindings] : A stack of sets of bindings of local variables. The element at the

18 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

top of the stack is called the current set of local variable bindings. A set of bindings
is pushed onto the stack on every entry into a local variable scope (see 9.2), and the top
element is removed from the stack on every exit from the scope. The scope with which
an element in the stack is associated is called the scope of the set of local variable
bindings.

[invoked-method-name] : A stack of names by which methods are invoked.

[defined-method-name] : A stack of names with which the invoked methods are defined.

NOTE The top elements of [invoked-method-name] and [defined-method-name] are usually the
same. However, they can be different if an invoked method has an alias name.

[block] : A stack of blocks passed to method invocations. An element of the stack may
be block-not-given. block-not-given is the special value which indicates that no block is

passed to a method invocation.

[global-variable-bindings] : A set of bindings of global variables.

7.2 The initial state

Immediately prior to execution of a program, the attributes of the execution context is initialized
as follows:

2)

8

Set [global-variable-bindings] to a newly created empty set. A conforming processor may
add bindings of any global variables to [global-variable-bindings] .

Create built-in classes and modules as described in Clause 15.

Create an empty stack for each attribute of the execution context except [global-variable-
bindings] .

Create a direct instance of the class Object and push it onto [self] .

Create a list containing only element, the class Object, and push the list onto [class-module-
list] .

Push the private visibility onto [default-method-visibility] .

Push block-not-given onto [block] .

Lexical structure

8.1 General description

Syntax

mput-element ::

line-terminator
| whitespace

©ISO/IEC 2012 — All rights reserved 19

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| comment
| end-of-program-marker
| token

The program text of a program is first converted into a sequence of input-elements, which are ei-
ther line-terminators, whitespace, comments, end-of-program-markers, or tokens. When several
prefixes of the input under the converting process have matching productions, the production
that matches the longest prefix is selected.

8.2 Program text

Syntax

source-character ::
[any character in ISO/IEC 646:1991 IRV |

A program is represented as a program text. A program text is a sequence of source-characters.
A source-character is a character in ISO/IEC 646:1991 IRV (the International Reference Ver-
sion). The support for any other character sets and encodings is unspecified.

NOTE A conforming processor is required to support ISO/IEC 646:1991 IRV. A conforming processor
may support other character sets and encodings. However, ways to handle characters other than those
in ISO/IEC 646:1991 IRV and ways to handle coded character sets where characters have different codes
from ISO/IEC 646:1991 are not specified in this International Standard.

Terminal symbols are sequences of those characters in ISO /TEC 646:1991 IRV. Control characters
and the character SPACE in ISO/IEC 646:1991 IRV are represented by two digits in hexadecimal
notation prefixed by “0x”, where the first and the second digits respectively represent x and y
of the notations of the form x/y specified in ISO/IEC 646, 5.1.

EXAMPLE “0x0a” represents the character LF, whose bit combination specified in ISO/IEC 646 is
0/10.

8.3 Line terminators

Syntax

line-terminator ::
0x0d’ 0x0a

Except in Clause 8 and 15.2.15.4, line-terminators are omitted from productions as described
in 5.2.3. However, a location where a line-terminator shall not occur, or a location where a
line-terminator shall occur is indicated by special terms: a forbidden term [see 5.2.4 d) 2)] or a
mandatory term [see 5.2.4 d) 3)], respectively.

EXAMPLE statements are separated by separators (see 10.2). The syntax of the separators is as
follows:

20 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

separator ::
5

| [line-terminator here]

The source

x=1+2
puts x

is therefore separated into the two statements “x = 1 + 2”7 and “puts x” by a line-terminator.

The source

99

is parsed as the single statement “x = 1 + 2” because “x =” is not a statement. However, the source

=1+2

is not a strictly conforming Ruby program because a line-terminator shall not occur before = in a single-

variable-assignment-expression, and “= 1 + 2” is not a statement. The fact that a line-terminator shall
not occur before = is indicated in the syntax of the single-variable-assignment-expression as follows (see
11.4.2.2.2):

single-variable-assignment-expression ::
variable [no line-terminator here| = operator-expression

8.4 Whitespace

Syntax

whitespace ::
0x09 | 0xOb | 0xOc | 0x0d | 0x20 | line-terminator-escape-sequence

line-terminator-escape-sequence ::
\ line-terminator

Except in Clause 8 and 15.2.15.4, whitespace is omitted from productions as described in 5.2.3.
However, a location where whitespace shall not occur, or a location where whitespace shall occur
is indicated by special terms: a forbidden term [see 5.2.4 d) 2)] or a mandatory term [see 5.2.4
d) 3)] , respectively.

©ISO/IEC 2012 — All rights reserved 21

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

8.5 Comments

Syntax

comment ::
single-line-comment
| multi-line-comment

single-line-comment ::
”
comment-content

comment-content ::
line-content

line-content ::
(source-character™) but not (source-character* line-terminator source-character*)

multi-line-comment ::
multi-line-comment-begin-line multi-line-comment-line”’
multi-line-comment-end-line

multi-line-comment-begin-line ::
[beginning of a line | =begin rest-of-begin-end-line” line-terminator

multi-line-comment-end-line ::
[beginning of a line | =end rest-of-begin-end-line’
(line-terminator | [end of a program |)

rest-of-begin-end-line ::
whitespace ™ comment-content

multi-line-comment-line ::
comment-line but not multi-line-comment-end-line

comment-line ::
comment-content line-terminator

”

The notation “[beginning of a line |” indicates the beginning of a program or the position

immediately after a line-terminator.

A comment is either a single-line-comment or a multi-line-comment. Except in Clause 8 and
15.2.15.4, comments are omitted from productions as described in 5.2.3.

A single-line-comment begins with “#” and continues to the end of the line. A line-terminator
at the end of the line is not considered to be a part of the comment. A single-line-comment can

22 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

contain any characters except line-terminators.
A multi-line-comment begins with a line beginning with =begin, and continues until and in-
cluding a line that begins with =end. Unlike single-line-comments, a line-terminator of a multi-

line-comment-end-line, if any, is considered to be part of the comment.

NOTE A line-content is a sequence of source-characters. However, line-terminators are not permitted
within a line-content as specified in the line-content production.

8.6 End-of-program markers

Syntax

end-of-program-marker ::
[beginning of a line | __END__ (line-terminator | [end of a program |)

An end-of-program-marker indicates the end of a program. Any source characters after an
end-of-program-marker are not treated as a program text.

NOTE __END__is not a keyword, and can be a local-variable-identifier.
8.7 Tokens
8.7.1 General description

Syntax

token ::
keyword
| identifier
| punctuator
| operator
| literal

punctuators and operators are symbols that have independent syntactic and semantic signifi-
cance. The semantics of punctuators and operators are described in the clauses from Clause 9
to Clause 14.

8.7.2 Keywords

Syntax

keyword ::
__LINE__ | __ENCODING__ | __FILE__ | BEGIN | END | alias | and | begin
| break | case | class | def | defined? | do | else | elsif | end
| ensure | for | false | if | in | module | next | nil | not | or | redo

©ISO/IEC 2012 — All rights reserved 23

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| rescue | retry | return | self | super | then | true | undef | unless
| until | when | while | yield

Keywords are case-sensitive.

NOTE __LINE ENCODING FILE

—— —= —_—— == ——

BEGIN, and END are reserved for future use.
8.7.3 Identifiers

Syntax

identifier ::
local-variable-identifier
| global-variable-identifier
| class-variable-identifier
| instance-variable-identifier
| constant-identifier
| method-only-identifier
| assignment-like-method-identifier

local-variable-identifier ::
(lowercase-character | _') identifier-character™ but not keyword

global-variable-identifier ::
$ identifier-start-character identifier-character*

class-variable-identifier ::
@@ identifier-start-character identifier-character™

instance-variable-identifier ::
@ identifier-start-character identifier-character®

constant-identifier ::
uppercase-character identifier-character® but not keyword

method-only-identifier ::
(constant-identifier | local-variable-identifier) (! | 7))

assignment-like-method-identifier ::
(constant-identifier | local-variable-identifier) =

identifier-character ::
lowercase-character
| uppercase-character
| decimal-digit

24 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
| _

identifier-start-character ::
lowercase-character
| uppercase-character

uppercase-character ::

A|B|CI|D|E|F|G|H|I|J|K|L|M|N|O|P|Q]|R
s TlU |V]WI[X]Y]Z

lowercase-character ::

a|blcldfel[f|lg|h[ilj|k|[l][m[n|lofplaqlr
sltlufv]w|x|[y]z

decimal-digit ::
o123 |4a|5]|6|7|8]29

8.7.4 Punctuators

Syntax

punctuator ::

LT CIY [LY el s ool v 2| =

8.7.5 Operators

Syntax

operator ::
L= v] &k |
| operator-method-name
| =

| assignment-operator

operator-method-name ::
SlE = === = > o= <<= <[>+] -

I A O T e e N I S R R U L

assignment-operator ::
assignment-operator-name =

assignment-operator-name ::
22 N2 N S S e o B B N VAR I O

©ISO/IEC 2012 — All rights reserved 25

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

8.7.6 Literals

8.7.6.1 General description

literal ::
numeric-literal
| string-literal
| array-literal
| reqular-expression-literal
| symbol

8.7.6.2 Numeric literals

Syntax

numeric-literal ::
signed-number
| unsigned-number

signed-number ::
(+ | -) unsigned-number

unsigned-number ::
integer-literal
| float-literal

integer-literal ::
decimal-integer-literal
| binary-integer-literal
| octal-integer-literal
| hezadecimal-integer-literal

decimal-integer-literal ::
unprefized-decimal-integer-literal
| prefived-decimal-integer-literal

unprefirved-decimal-integer-literal ::
0
| decimal-digit-except-zero (_° decimal-digit)*

prefized-decimal-integer-literal ::
0 (d|D) digit-decimal-part

26 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

digit-decimal-part
decimal-digit (_° decimal-digit)*

binary-integer-literal ::
0 (b |B) binary-digit (_" binary-digit)*

octal-integer-literal ::

0(_|o]0)" octal-digit (_7 octal-digit)*

hezxadecimal-integer-literal ::
0 (x| X) hexadecimal-digit (_* hexadecimal-digit)*

float-literal ::
float-literal-without-exponent
| float-literal-with-exponent

float-literal-without-exponent ::
unprefived-decimal-integer-literal . digit-decimal-part

float-literal-with-exponent ::
significand-part exponent-part

significand-part ::
float-literal-without-exponent
| unprefized-decimal-integer-literal

exponent-part ::
(e|E) (+]|-)" digit-decimal-part

decimal-digit-except-zero ::
123 |4]|5|6]7]|8]9

binary-digit ::
0| 1

octal-digit ::
o|1|2|3|4|5|6|T7

hexadecimal-digit ::
decimal-digit | a | b | c | d| e | £f|A|B|C|D]|E]|F

If the previous token of a signed-number is a local-variable-identifier, constant-identifier, or
method-only-identifier, at least one whitespace character or line-terminator shall be present be-

©ISO/IEC 2012 — All rights reserved 27

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

tween the local-variable-identifier, constant-identifier, or method-only-identifier, and the signed-
number.

EXAMPLE -123 in the following program is a signed-number because there is whitespace between x
and -123.

x -123
In the above program, the method x is invoked with the value of -123 as the argument.

However, -123 in the following program is separated into the two tokens - and 123 because there is no
whitespace between x and -123.

x-123
In the above program, the method - is invoked on the value of x with the value of 123 as the argument.

Semantics

A numeric-literal evaluates to either an instance of the class Integer or a direct instance of the
class Float.

NOTE Subclasses of the class Integer may be defined as described in 15.2.8.1.

An unsigned-number of the form integer-literal evaluates to an instance of the class Integer
whose value is the value of one of the syntactic term sequences in the integer-literal production.

An unsigned-number of the form float-literal evaluates to a direct instance of the class Float
whose value is the value of one of the syntactic term sequences in the float-literal production.

A signed-number which begins with “+” evaluates to the resulting instance of the unsigned-
number. A signed-number which begins with “~” evaluates to an instance of the class Integer
or a direct instance of the class Float whose value is the negated value of the resulting instance
of the unsigned-number.

The value of an integer-literal, a decimal-integer-literal, a float-literal, or a significand-part is the
value of one of the syntactic term sequences in their production.

The value of a unprefized-decimal-integer-literal is 0 if it is of the form “0”, otherwise the value
of the unprefired-decimal-integer-literal is the value of a sequence of characters, which consist of
a decimal-digit-except-zero followed by a sequence of decimal-digits, ignoring interleaving “_”s,
computed using base 10.

The value of a prefixed-decimal-integer-literal is the value of the digit-decimal-part.

The value of a digit-decimal-part is the value of the sequence of decimal-digits, ignoring inter-

W

leaving “_”s, computed using base 10.

The value of a binary-integer-literal is the value of the sequence of binary-digits, ignoring inter-

leaving “_”s, computed using base 2.

The value of an octal-integer-literal is the value of the sequence of octal-digits, ignoring inter-

W

leaving “_”s, computed using base 8.

28 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

The value of a hexadecimal-integer-literal is the value of the sequence of hexadecimal-digits,

“won

ignoring interleaving “_”s, computed using base 16. The values of hezadecimal-digits a (or A)
through £ (or F) are 10 through 15, respectively.

The value of a float-literal-without-exponent is the value of the unprefized-decimal-integer-literal
plus the value of the digit-decimal-part times 10~" where n is the number of decimal-digits of

the digit-decimal-part.

The value of a float-literal-with-exponent is the value of the significand-part times 10™ where n
is the value of the exponent-part.

The value of an exponent-part is the negative value of the digit-decimal-part if “-” occurs,
otherwise, it is the value of the digit-decimal-part.

See 15.2.8.1 for the range of the value of an instance of the class Integer.
See 15.2.9.1 for the precision of the value of an instance of the class Float.
8.7.6.3 String literals

8.7.6.3.1 General description

Syntax

string-literal ::
single-quoted-string
| double-quoted-string
| quoted-non-expanded-literal-string
| quoted-expanded-literal-string
| here-document
| external-command-execution

Semantics

A string-literal evaluates to a direct instance of the class String.

NOTE Some of the string-literals represents a value of an expression (see 8.7.6.3.3), as well as the literal
characters of the program text.

8.7.6.3.2 Single quoted strings

Syntax

single-quoted-string ::
? single-quoted-string-character™ °

single-quoted-string-character ::
single-quoted-string-non-escaped-character
| single-quoted-escape-sequence

©ISO/IEC 2012 — All rights reserved 29

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

single-quoted-escape-sequence ::
single-escape-character-sequence
| single-quoted-string-non-escaped-character-sequence

single-escape-character-sequence ::
\ single-quoted-string-meta-character

single-quoted-string-non-escaped-character-sequence ::
\ single-quoted-string-non-escaped-character

single-quoted-string-meta-character ::

)’\

single-quoted-string-non-escaped-character ::
source-character but not single-quoted-string-meta-character

Semantics

A single-quoted-string consists of zero or more characters enclosed by single quotes. The sequence
of single-quoted-string-characters within the pair of single quotes represents the content of a
string as it occurs in a program text literally, except for single-escape-character-sequences. The
sequence “\\” represents “\”. The sequence “\’” represents “’”.

NOTE Unlike a single-escape-character-sequence, a single-quoted-string-non-escaped-character-sequence
represents two characters as it occurs in a program text literally. For example, >\a’ represents two
characters \ and a.

EXAMPLE ’\a\’\\’ represents a string whose content is “\a’\” without the double quotes.
8.7.6.3.3 Double quoted strings

Syntax

double-quoted-string ::
" double-quoted-string-character™ "

double-quoted-string-character ::
source-character but not (" |[#]|\)
| # [lookahead ¢ { $, @, { }]
| double-escape-sequence
| interpolated-character-sequence

double-escape-sequence ::
simple-escape-sequence
| non-escaped-sequence
| line-terminator-escape-sequence
| octal-escape-sequence

30 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| hezadecimal-escape-sequence
| control-escape-sequence

simple-escape-sequence ::
\ double-escaped-character

double-escaped-character ::
n|t|r|f|]v]a|el|b]|s

non-escaped-sequence ::
\ non-escaped-double-quoted-string-character

non-escaped-double-quoted-string-character ::
source-character but not (alpha-numeric-character | line-terminator)

octal-escape-sequence ::
\ octal-digit octal-digit’ octal-digit”

hexadecimal-escape-sequence ::
\ x hezadecimal-digit hezadecimal-digit’

control-escape-sequence ::
\ (C-| ¢) control-escaped-character

control-escaped-character ::
double-escape-sequence
| 7

| source-character butnot (\ | 7)

interpolated-character-sequence ::
global-variable-identifier
| # class-variable-identifier
| # instance-variable-identifier
| # { compound-statement }

alpha-numeric-character ::
uppercase-character
| lowercase-character
| decimal-digit

Semantics

A double-quoted-string consists of zero or more characters enclosed by double quotes. The se-
quence of double-quoted-string-characters within the pair of double quotes represents the content
of a string.

©ISO/IEC 2012 — All rights reserved 31

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Except for a double-escape-sequence and an interpolated-character-sequence, a double-quoted-
string-character represents a character as it occurs in a program text.

A simple-escape-sequence represents a character as shown in Table 1.

Table 1 — Simple escape sequences

Escape sequence | Character code
\n 0x0a
\t 0x09
\r 0x0d
\f 0x0c
\v 0x0b
\a 0x07
\e 0x1b
\b 0x08
\s 0x20

An octal-escape-sequence represents a character the code of which is the value of the sequence
of octal-digits computed using base 8.

A hexadecimal-escape-sequence represents a character the code of which is the value of the
sequence of heradecimal-digits computed using base 16.

A non-escaped-sequence represents its non-escaped-double-quoted-string-character.

A line-terminator-escape-sequence is used to break the content of a string into separate lines in
a program text without inserting a line-terminator into the string. A line-terminator-escape-
sequence does not count as a character of the string.

A control-escape-sequence represents a character the code of which is computed by performing a
bitwise AND operation between 0x9f and the code of the character represented by the control-
escaped-character, except when the control-escaped-character is 7, in which case, the control-
escape-sequence represents a character the code of which is 0x7f.

An interpolated-character-sequence is a part of a string-literal which is dynamically evaluated
when the string-literal in which it is embedded is evaluated. The value of a string-literal which
contains interpolated-character-sequences is a direct instance of the class String the content of
which is made from the string-literal where each occurrence of interpolated-character-sequence
is replaced by the content of an instance of the class String which is the dynamically evaluated
value of the interpolated-character-sequence.

An interpolated-character-sequence is evaluated as follows:

a) If it is of the form # global-variable-identifier, evaluate the global-variable-identifier (see
11.5.4.4). Let V be the resulting value.

b) If it is of the form # class-variable-identifier, evaluate the class-variable-identifier (see
11.5.4.5). Let V be the resulting value.

32 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

c) If it is of the form # instance-variable-identifier, evaluate the instance-variable-identifier
(see 11.5.4.6). Let V be the resulting value.

d) If it is of the form # { compound-statement }, evaluate the compound-statement (see 10.2).
Let V be the resulting value.

e) If V is an instance of the class String, the value of interpolated-character-sequence is V.
f) Otherwise, invoke the method to_s on V with no arguments. Let S be the resulting value.
g) If S is an instance of the class String, the value of interpolated-character-sequence is S.
h) Otherwise, the behavior is unspecified.

EXAMPLE "1 + 1 = #{1 + 1}" represents a string whose content is “1 + 1 = 2” without the double
quotes.

8.7.6.3.4 Quoted non-expanded literal strings

Syntax

quoted-non-expanded-literal-string ::
%q non-expanded-delimited-string

non-expanded-delimited-string ::
literal-beginning-delimiter non-expanded-literal-string™ literal-ending-delimiter

non-expanded-literal-string ::
non-expanded-literal-character
| non-expanded-delimited-string

non-expanded-literal-character ::
non-escaped-literal-character
| non-expanded-literal-escape-sequence

non-escaped-literal-character ::
source-character but not quoted-literal-escape-character

non-expanded-literal-escape-sequence ::
non-expanded-literal-escape-character-sequence
| non-escaped-non-expanded-literal-character-sequence

non-expanded-literal-escape-character-sequence ::
\ non-expanded-literal-escaped-character

non-expanded-literal-escaped-character ::
literal-beginning-delimiter

ISO/IEC 2012 — All rights reserved 33
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
| literal-ending-delimiter

I\

quoted-literal-escape-character ::
non-expanded-literal-escaped-character

non-escaped-non-expanded-literal-character-sequence ::
\ non-escaped-non-expanded-literal-character

non-escaped-non-expanded-literal-character ::
source-character but not mnon-expanded-literal-escaped-character

literal-beginning-delimiter ::
source-character but not alpha-numeric-character

literal-ending-delimiter ::
source-character but not alpha-numeric-character

All literal-beginning-delimiters in a non-expanded-delimited-string shall be the same character.
All literal-ending-delimiters in a non-expanded-delimited-string shall be the same character.

If a literal-beginning-delimiter is one of the characters on the left in Table 2, the corresponding

literal-ending-delimiter shall be the corresponding character on the right in Table 2. Otherwise,
the literal-ending-delimiter shall be the same character as the literal-beginning-delimiter.

Table 2 — Matching literal-beginning-delimiter and literal-ending-delimiter

literal-beginning-delimiter | literal-ending-delimiter
{ }
()
[]
< >

The non-expanded-delimited-string of a non-expanded-literal-string in a quoted-non-expanded-
literal-string applies only when its literal-beginning-delimiter is one of the characters on the left
in Table 2.

NOTE 1 A quoted-non-expanded-literal-string can have nested brackets in regard to the literal-beginning-
delimiter and the corresponding literal-ending-delimiter (e.g., %hq[[abc] [def]]). Different brackets than
these two brackets and any escaped brackets are ignored in this nesting. For example, %q[\ [abc\)def (]
represents a direct instance of the class String whose content is “[abc)\)def(”. In this case, only [,
1, and \ can be non-expanded-literal-escaped-characters because the literal-beginning-delimiter and the
corresponding literal-beginning-delimiter are [and] respectively.

Semantics

The value of a quoted-non-expanded-literal-string represents a string whose content is the con-
catenation of the contents represented by the non-expanded-literal-strings of the non-expanded-

34 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

delimited-string of the quoted-non-expanded-literal-string.

The value of a non-expanded-literal-string represents the content of a string as it occurs in a
program text literally, except for non-expanded-literal-escape-character-sequences.

NOTE 2 The content of a string represented by a non-expanded-literal-string contains the literal-
beginning-delimiter and the literal-ending-delimiter of a non-expanded-delimited-string in the non-erpanded-
literal-string. For example, %q((abc)) represents a direct instance of the class String whose content is
(((abC)VV .

The value of a non-expanded-literal-escape-character-sequence represents a character as fol-
lows. The sequence “\\” represents “\”; the sequence “\”literal-beginning-delimiter, a literal-
beginning-delimiter; the sequence “\” literal-ending-delimiter, a literal-ending-delimiter.

8.7.6.3.5 Quoted expanded literal strings

Syntax

quoted-expanded-literal-string ::
% Q" expanded-delimited-string

expanded-delimited-string ::
literal-beginning-delimiter expanded-literal-string™ literal-ending-delimiter

expanded-literal-string ::
expanded-literal-character
| expanded-delimited-string

expanded-literal-character ::
non-escaped-literal-character but not #
| # [lookahead ¢ { $, @, { }]
| double-escape-sequence
| interpolated-character-sequence

All literal-beginning-delimiters in a expanded-delimited-string shall be the same character. All
literal-ending-delimiters in a expanded-delimited-string shall be the same character.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.
The expanded-delimited-string of a expanded-literal-string in a quoted-expanded-literal-string ap-
plies only when its literal-beginning-delimiter is one of the characters on the left in 8.7.6.3.4

Table 2.

Semantics

The value of a quoted-expanded-literal-string represents a string whose content is the concatena-
tion of the contents represented by the expanded-literal-strings of the expanded-delimited-string
of the quoted-expanded-literal-string.

ISO/IEC 2012 — All rights reserved 35
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

A character in an ezpanded-literal-string other than a double-escape-sequence or an interpolated-
character-sequence represents a character as it occurs in a program text. A double-escape-
sequence and an interpolated-character-sequence represent characters as described in 8.7.6.3.3.

NOTE The content of a string represented by a expanded-literal-string contains the literal-beginning-
delimiter and the literal-ending-delimiter of a expanded-delimited-string in the expanded-literal-string.
For example, “%Q((#{1 + 2}))” represents a string whose content is “(3)”.

8.7.6.3.6 Here documents

Syntax

here-document ::
heredoc-start-line heredoc-body heredoc-end-line

heredoc-start-line ::
heredoc-signifier rest-of-line

heredoc-signifier ::
<< heredoc-delimiter-specifier

rest-of-line ::
. ? . .
line-content® line-terminator

heredoc-body ::
heredoc-body-line*

heredoc-body-line ::
(line-content line-terminator) but not heredoc-end-line

heredoc-delimiter-specifier ::
=" heredoc-delimiter

heredoc-delimiter ::
non-quoted-delimiter
| single-quoted-delimiter
| double-quoted-delimiter
| command-quoted-delimiter

non-quoted-delimiter ::
non-quoted-delimiter-identifier

non-quoted-delimiter-identifier ::
identifier-character™

36 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

single-quoted-delimiter ::

> single-quoted-delimiter-identifier ’

single-quoted-delimiter-identifier ::

ISO/IEC 30170:2012(E)

(source-character™) but not (source-character™ (’ | line-terminator) source-

character™)

double-quoted-delimiter ::

" double-quoted-delimiter-identifier "

double-quoted-delimiter-identifier ::

(source-character™) but not (source-character® (" | line-terminator) source-

character™)

command-quoted-delimiter ::
[4

command-quoted-delimiter-identifier ::

(source-character®) but not (source-character® (

character™)

heredoc-end-line ::
indented-heredoc-end-line
| non-indented-heredoc-end-line

indented-heredoc-end-line ::

command-quoted-delimiter-identifier

¢ | line-terminator) source-

[beginning of a line | whitespace™® heredoc-delimiter-identifier line-terminator

non-indented-heredoc-end-line ::

[beginning of a line | heredoc-delimiter-identifier line-terminator

heredoc-delimiter-identifier ::
non-quoted-delimiter-identifier
| single-quoted-delimiter-identifier
| double-quoted-delimiter-identifier

| command-quoted-delimiter-identifier

The heredoc-signifier, the heredoc-body, and the heredoc-end-line in a here-document are treated
as a unit and considered to be a single token occurring at the place where the heredoc-signifier
occurs. The first character of the rest-of-line becomes the head of the input after the here-

document has been processed.

The form of a heredoc-end-line depends on the presence or absence of the beginning “~” of the

heredoc-delimiter-specifier.

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

37

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

If the heredoc-delimiter-specifier begins with “-”, a line of the form indented-heredoc-end-line
is treated as the heredoc-end-line, otherwise, a line of the form non-indented-heredoc-end-line
is treated as the heredoc-end-line. In both forms, the heredoc-delimiter-identifier shall be the

same sequence of characters as it occurs in the corresponding part of heredoc-delimiter.

If the heredoc-delimiter is of the form non-quoted-delimiter, the heredoc-delimiter-identifier shall
be the same sequence of characters as the non-quoted-delimiter-identifier; if it is of the form
single-quoted-delimiter, the single-quoted-delimiter-identifier; if it is of the form of double-quoted-
delimiter, the double-quoted-delimiter-identifier; if it is of the form of command-quoted-delimiter,
the command-quoted-delimiter-identifier.

Semantics

A here-document evaluates to a direct instance of the class String or the value of the invocation
of the method ¢.

The object to which a here-document evaluates is created as follows:

a) Create a direct instance S of the class String from the heredoc-body, the content of which
depends on the form of the heredoc-delimiter as follows:

e If heredoc-delimiter is of the form single-quoted-delimiter, the content of S is the se-
quence of source-characters of the heredoc-body.

e If heredoc-delimiter is in any of the forms non-quoted-delimiter, double-quoted-delimiter,
or command-quoted-delimiter, the content of S is the sequence of characters which is

represented by the heredoc-body as a sequence of double-quoted-string-characters (see
8.7.6.3.3).

b) If the heredoc-delimiter is not of the form command-quoted-delimiter, let V be S.

c) Otherwise, invoke the method ¢ on the current self with the list of arguments which has
only one element S. Let V be the resulting value of the method invocation.

d) V is the object to which the here-document evaluates.
8.7.6.3.7 External command execution

Syntax

external-command-execution ::
backquoted-external-command-execution
| quoted-external-command-execution

backquoted-external-command-execution ::

¢ backquoted-external-command-execution-character™® ¢

backquoted-external-command-execution-character ::
source-character but not (¢ |[#]|\)
| # [lookahead ¢ { $, @, { }]

38 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| double-escape-sequence
| interpolated-character-sequence

quoted-external-command-execution ::
%x expanded-delimited-string

Semantics

An external-command-execution is a form to invoke the method °.
An external-command-execution is evaluated as follows:

a) If the external-command-execution is of the form backquoted-external-command-execution,
construct a direct instance S of the class String whose content is a sequence of characters
represented by backquoted-external-command-execution-characters. A backquoted-external-
command-execution-character other than a double-escape-sequence or an interpolated-character-
sequence represents a character as it occurs in a program text. A double-escape-sequence
and an interpolated-character-sequence represent characters as described in 8.7.6.3.3.

b) If the external-command-execution is of the form quoted-external-command-execution, con-
struct a direct instance S of the class String by replacing “%x” with “%Q” and evaluating

the resulting quoted-expanded-literal-string as described in 8.7.6.3.5.

c) Invoke the method ¢ on the current self with a list of arguments which has only one element

S.
d) The value of the external-command-ezxecution is the resulting value.
8.7.6.4 Array literals

Syntax

array-literal ::
quoted-non-expanded-array-constructor
| quoted-expanded-array-constructor

quoted-non-expanded-array-constructor ::
%w literal-beginning-delimiter non-expanded-array-content literal-ending-delimiter

non-expanded-array-content ::
quoted-array-item-separator-list’ non-expanded-array-item-list”
quoted-array-item-separator-list”

non-expanded-array-item-list ::
non-expanded-array-item (quoted-array-item-separator-list non-expanded-array-item)*

quoted-array-item-separator-list ::
quoted-array-item-separator ™

ISO/IEC 2012 — All rights reserved 39
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

quoted-array-item-separator ::
whitespace
| line-terminator

non-expanded-array-item ::
non-expanded-array-item-character ™

non-expanded-array-item-character ::
non-escaped-array-character
| non-expanded-array-escape-sequence

non-escaped-array-character ::
non-escaped-literal-character but not quoted-array-item-separator

non-expanded-array-escape-sequence ::
non-expanded-literal-escape-sequence
| \ quoted-array-item-separator

quoted-expanded-array-constructor ::
MW literal-beginning-delimiter expanded-array-content literal-ending-delimiter

expanded-array-content ::
quoted-array-item-separator-list” expanded-array-item-list’
quoted-array-item-separator-list”

expanded-array-item-list ::
expanded-array-item (quoted-array-item-separator-list expanded-array-item)*

expanded-array-item ::
expanded-array-item-character ™+

expanded-array-item-character ::
non-escaped-array-item-character
| # [lookahead ¢ { $, @, { }]
| expanded-array-escape-sequence
| interpolated-character-sequence

non-escaped-array-item-character ::
source-character but not (quoted-array-item-separator | \ | #)

expanded-array-escape-sequence ::
double-escape-sequence
| \ quoted-array-item-separator

40 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.

If the literal-beginning-delimiter is none of the characters on the left in 8.7.6.3.4 Table 2, the
non-escaped-array-item-character shall not be the literal-beginning-delimiter.

If the literal-beginning-delimiter is one of the characters on the left in 8.7.6.3.4 Table 2, the
quoted-non-expanded-array-constructor or quoted-expanded-array-constructor shall satisfy the
following conditions, where C' is the quoted-non-expanded-array-constructor or quoted-expanded-
array-constructor, B is the literal-beginning-delimiter, and E is the literal-ending-delimiter which
corresponds to B in 8.7.6.3.4 Table 2, and “the number of z in y” means the number of z
to appear in y except appearances in non-expanded-array-escape-sequences or expanded-array-
escape-sequences:

e The number of B in C and the number of F in C are the same.

e For any substring S of C which starts from the first B and ends before the last E, the
number of B in § is larger than the number of F in S.

NOTE The above conditions are for nested brackets in an array-literal. Matching of brackets is ir-
relevant to the structure of the value of an array-literal. For example, %wl[[ab cd] [ef]] represents

[ll [abll , Ilcd] [ef] ll] .

Semantics

An array-literal evaluates to a direct instance of the class Array as follows:
a) A quoted-non-expanded-array-constructor is evaluated as follows:
1) Create an empty direct instance of the class Array. Let A be the instance.

2) If non-expanded-array-item-list is present, for each non-expanded-array-item of the non-
expanded-array-item-list, take the following steps:

i) Create a direct instance S of the class String, the content of which is represented
by the sequence of non-expanded-array-item-characters.

A non-expanded-array-item-character represents itself, except in the case of a
non-expanded-array-escape-sequence. A non-expanded-array-escape-sequence rep-
resents a character represented by the non-expanded-literal-escape-sequence as de-
scribed in 8.7.6.3.4, except when the non-expanded-array-escape-sequence is of the
form \ quoted-array-item-separator. A non-expanded-array-escape-sequence of the
form \ quoted-array-item-separator represents the quoted-array-item-separator as
it occurs in a program text literally.

ii) Append S to A.
3) The value of the quoted-non-expanded-array-constructor is A.
b) A quoted-expanded-array-constructor is evaluated as follows:
1) Create an empty direct instance of the class Array. Let A be the instance.

2) 1If expanded-array-item-list is present, process each expanded-array-item of the expanded-
array-item-list as follows:

©ISO/IEC 2012 — All rights reserved 41

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

i) Create a direct instance S of the class String, the content of which is represented
by the sequence of expanded-array-item-characters.

An expanded-array-item-character represents itself, except in the case of an expanded-
array-escape-sequence and an interpolated-character-sequence. An expanded-array-
escape-sequence represents a character represented by the double-escape-sequence
as described in 8.7.6.3.3, except when the expanded-array-escape-sequence is of
the form \ quoted-array-item-separator. An expanded-array-escape-sequence of the
form \ quoted-array-item-separator represents the quoted-array-item-separator as
it occurs in a program text literally. An interpolated-character-sequence represents

a sequence of characters as described in 8.7.6.3.3.

ii) Append S to A.
3) The value of the quoted-expanded-array-constructor is A.
8.7.6.5 Regular expression literals

Syntax

regular-expression-literal ::
/ regular-expression-body / regular-expression-option™
| %r literal-beginning-delimiter expanded-literal-string*
literal-ending-delimiter regqular-expression-option™

reqular-expression-body ::
reqular-expression-character*

regular-expression-character ::
source-character butnot (/|#|\)
| # [lookahead ¢ { $, @, { }]
| reqular-expression-non-escaped-sequence
| reqular-expression-escape-sequence
| line-terminator-escape-sequence
| interpolated-character-sequence

reqular-expression-non-escaped-sequence ::
\ regular-expression-non-escaped-character

reqular-expression-non-escaped-character ::
source-character but not (0x0d | 0x0Oa)
| 0x0d [lookahead ¢ { 0x0a }]

regular-expression-escape-sequence ::

\/

regular-expression-option ::
i | m

42 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Within an expanded-literal-string of a reqular-expression-literal, a literal-beginning-delimiter shall
be the same character as the literal-beginning-delimiter of the reqular-expression-literal.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.

Semantics

A regular-expression-literal evaluates to a direct instance of the class Regexp.

The pattern attribute of an instance of the class Regexp (see 15.2.15.1) resulting from a regular-
expression-literal is the string represented by regular-expression-characters or erpanded-literal-
strings. The string shall be of the form pattern (see 15.2.15.4).

A regular-expression-character other than a regular-expression-escape-sequence, line-terminator-
escape-sequence, or interpolated-character-sequence represents itself as it occurs in a program text
literally. An expanded-literal-string other than a line-terminator-escape-sequence or interpolated-
character-sequence represents itself as it occurs in a program text literally.

A regular-expression-escape-sequence represents the character /.

A line-terminator-escape-sequence in a reqular-expression-character and an expanded-literal-
string is ignored in the resulting pattern of an instance of the class Regexp.

An interpolated-character-sequence in a reqular-expression-literal and an expanded-literal-string
is evaluated as described in 8.7.6.3.3, and represents a string which is the content of the resulting
instance of the class String.

A reqular-expression-option specifies the ignorecase-flag and the multiline-flag attributes of an
instance of the class Regexp resulting from a regular-ezpression-literal. If i is present in a regular-
expression-option, the ignorecase-flag attribute of the resulting instance of the class Regexp is
set to true. If m is present in a regular-expression-option, the multiline-flag attribute of the
resulting instance of the class Regexp is set to true.

The grammar for a pattern of an instance of the class Regexp created from a reqular-expression-
literal is described in 15.2.15.4.

8.7.6.6 Symbol literals

Syntax

symbol ::
symbol-literal
| dynamic-symbol

symbol-literal ::
: symbol-name

dynamic-symbol ::
: single-quoted-string

©ISO/IEC 2012 — All rights reserved 43

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| : double-quoted-string
| %s literal-beginning-delimiter non-expanded-literal-string™ literal-ending-delimiter

symbol-name ::
instance-variable-identifier
| global-variable-identifier
| class-variable-identifier
| constant-identifier
| local-variable-identifier
| method-only-identifier
| assignment-like-method-identifier
| operator-method-name
| keyword

The single-quoted-string, double-quoted-string, or non-erpanded-literal-string of the dynamic-
symbol shall not contain any sequence which represents the character 0x00 in the resulting value
of the single-quoted-string, double-quoted-string, or non-expanded-literal-string as described in
8.7.6.3.2, 8.7.6.3.3, or 8.7.6.3.4.

Within a non-expanded-literal-string, literal-beginning-delimiter shall be the same character as
the literal-beginning-delimiter of the dynamic-symbol.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.

Semantics

A symbol evaluates to a direct instance of the class Symbol. A symbol-literal evaluates to a direct
instance of the class Symbol whose name is the symbol-name. A dynamic-symbol evaluates to a
direct instance of the class Symbol whose name is the content of an instance of the class String
which is the value of the single-quoted-string (see 8.7.6.3.2), double-quoted-string (see 8.7.6.3.3),
or non-expanded-literal-string (see 8.7.6.3.4). If the content of the instance of the class String
contains the character 0x00, a direct instance of the class ArgumentError may be raised.

9 Scope of variables
9.1 General description

The scope of a local variable or a global variable is a static scope, which is a set of regions of
a program text.

Instance variables, constants, and class variables have scopes determined dynamically by ex-
ecution contexts. Their bindings are searched depending on values of attributes of execution
contexts (see 11.5.4.2, 11.5.4.5, and 11.5.4.6).

9.2 Scope of local variables

A local variable is referred to by a local-variable-identifier.

Scopes for local variables are introduced by the following program constructs:

44 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e program (see 10.1)

e class-body (see 13.2.2)

e module-body (see 13.1.2)

e singleton-class-body (see 13.4.2)

e method-definition (see 13.3.1) and singleton-method-definition (see 13.4.3), for both of which
the scope starts with the method-parameter-part and continues up to and including the

method-body.

e block (see 11.3.3)
Let P be any of the above program constructs. Let S be the region of P excluding all the regions
of any of the above program constructs (except block) nested within P. Then, S is the local

variable scope which corresponds to the program construct P.

The scope of a local variable is the local variable scope whose set of local variable bindings
contains the binding of the local variable, which is resolved as described below.

Given a local-variable-identifier which is a reference to a local variable, the binding of the local
variable is resolved as follows:

a) Let N be the local-variable-identifier. Let B be the current set of local variable bindings.
b) Let S be the scope of B.
c) If a binding with name N exists in B, that binding is the resolved binding.
d) If a binding with name N does not exist in B:
1) If S is a local variable scope which corresponds to a block:

i) If the local-variable-identifier occurs as a left-hand-side of a block-parameter-list,
whether to proceed to the next step or not is implementation-defined.

ii) Let new B be the element immediately below the current B on [local-variable-
bindings] , and continue searching for a binding with name N from Step b).

2) Otherwise, a binding is considered not resolved.
9.3 Scope of global variables

The scope of global variables is global in the sense that they are accessible everywhere in a
program. Global variable bindings are created in [global-variable-bindings] .

10 Program structure
10.1 Program

Syntax

©ISO/IEC 2012 — All rights reserved 45

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

program ::
compound-statement

The program text of a strictly conforming program shall be an element of the set of sequences of
characters represented by the nonterminal symbol program. If a program includes one or more
program constructs which are never evaluated, the behavior is unspecified.

Semantics

A program is evaluated as follows:

a) Push an empty set onto [local-variable-bindings] .
b) Evaluate the compound-statement.
c) The value of the program is the resulting value.

d) Restore the execution context by removing the element from the top of [local-variable-
bindings] .

10.2 Compound statement

Syntax

compound-statement ::
statement-list” separator-list’

statement-list ::
statement (separator-list statement)*

separator-list ::
separator ™

separator ::
5

| [line-terminator here|

Semantics

A compound-statement is evaluated as follows:

a) If the statement-list of the compound-statement is omitted, the value of the compound-
statement is nil.

46 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) 1If the statement-list of the compound-statement is present, evaluate each statement of the
statement-list in the order it appears in the program text. The value of the compound-
statement is the value of the last statement of the statement-list.

11 Expressions
11.1 General description

Syntax

expression ::
NOT-expression
| keyword-AND-expression
| keyword-OR-expression

NOT-expression
operator-erpression
| method-invocation-without-parentheses
| ! method-invocation-without-parentheses
| keyword-NOT-expression

An expression is a program construct which makes up a statement (see 12). A single expression
can be a statement as an expression-statement (see 12.2).

NOTE A difference between an expression and a statement is that an expression is ordinarily used
where its value is required, but a statement is ordinarily used where its value is not necessarily required.
However, there are some exceptions. For example, a jump-expression (see 11.5.2.4) does not have a value,
and the value of the last statement of a compound-statement can be used.

Semantics

See 11.2.3 for keyword-AND-expressions. See 11.2.4 for keyword-OR-expressions.

A NOT-expression of the form operator-expression is evaluated as described in 11.4. A NOT-
expression of the form method-invocation-without-parentheses is evaluated as described in 11.3.
See 11.2.2 for other NOT-expressions.

11.2 Logical expressions

11.2.1 General description

Syntax

logical-expression ::=
logical-NOT-expression
| logical-AND-expression
| logical-OR-expression

©ISO/IEC 2012 — All rights reserved 47

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Any of logical-NOT-expression, logical-AND-expression, and logical-OR-expression is a concep-
tual name, which is used to organize that of the form using a keyword (e.g., “not x”) and that
of the form using an operator (e.g., “!x”).

See 11.2.2 for logical-NOT-expressions. See 11.2.3 for logical-AND-expressions. See 11.2.4 for
logical-OR-expressions.

11.2.2 Logical NOT expressions

Syntax

logical-NOT-expression ::=
keyword-NOT-expression
| operator-NOT-expression

keyword-NOT-expression ::
not NOT-expression

operator-NOT-expression ::=
' (method-invocation-without-parentheses | unary-expression)

NOTE An operator-NOT-expression of the form !unary-expression is a unary-expression (see 11.4.3.1).
An operator-NOT-expression of the form !method-invocation-without-parentheses is a NOT-expression
(see 11.1).

Semantics

a) A logical-NOT-expression is evaluated as follows:

1) If it is of the form not NOT-expression, evaluate the NOT-expression. Let X be the
resulting value.

2) Ifit is an operator-NOT-expression, evaluate its method-invocation-without-parentheses
or unary-expression. Let X be the resulting value.

3) If X is a trueish object, the value of the logical-NOT-expression is false.
4) Otherwise, the value of the logical-NOT-expression is true.
b) The above steps a) 3) and a) 4) may be replaced by the following step:

1) Create an empty list of arguments L. Invoke the method '@ on X with L as the list of
arguments. The value of the logical-NOT-expression is the resulting value.

In this case, the processor shall:

e include the operator '@ in operator-method-name.

48 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e define an instance method '@ in the class Object, one of its superclasses (see 6.5.4), or
a module included in the class Object. The method !@ shall not take any arguments
and shall return true if the receiver is false or nil, and shall return false otherwise.

11.2.3 Logical AND expressions

Syntax

logical-AND-expression ::=
keyword-AND-expression
| operator-AND-expression

keyword-AND-expression ::
expression [no line-terminator here| and NOT-expression

operator-AND-expression ::
equality-expression
| operator-AND-ezxpression [no line-terminator here| && equality-expression

Semantics

A logical-AND-expression is evaluated as follows:

a) If the logical-AND-expression is an equality-ezpression, evaluate the equality-expression as
described in 11.4.4.

b) Otherwise:

1) Evaluate the expression or the operator-AND-expression. Let X be the resulting value.

2) If X is a trueish object, evaluate the NOT-expression or equality-expression. Let Y be
the resulting value. The value of the logical-A ND-expression is Y.

3) Otherwise, the value of the logical-AND-expression is X.
11.2.4 Logical OR expressions

Syntax

logical-OR-expression ::=
keyword-OR-expression
| operator-OR-expression

keyword-OR-expression ::
expression [no line-terminator here] or NOT-expression

©ISO/IEC 2012 — All rights reserved 49

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

operator-OR-expression ::
operator-AND-expression
| operator-OR-expression [no line-terminator here] || operator-AND-expression

Semantics

A logical-OR-expression is evaluated as follows:

a) If the logical-OR-expression is an operator-AND-expression, evaluate the operator-AND-
expression as described in 11.2.3.

b) Otherwise:

1) Evaluate the expression or the operator-OR-expression. Let X be the resulting value.

2) If X is a falseish object, evaluate the NOT-expression or the operator-AND-expression.
Let Y be the resulting value. The value of the logical-OR-expression is Y.

3) Otherwise, the value of the logical-OR-expression is X.
11.3 Method invocation expressions
11.3.1 General description

Syntax

method-invocation-expression ::=
primary-method-invocation
| method-invocation-without-parentheses
| local-variable-identifier

primary-method-invocation ::
super-with-optional-argument
| indezing-method-invocation
| method-only-identifier
| method-identifier block
| method-identifier argument-with-parentheses block”’
| primary-expression [no line-terminator here| . method-name
argument-with-parentheses”’ block’

| primary-expression [no line-terminator here] :: method-name
argument-with-parentheses block’

| primary-expression [no line-terminator here] :: method-name-except-constant
block’

method-identifier ::
local-variable-identifier
| constant-identifier
| method-only-identifier

50 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

method-name ::
method-identifier
| operator-method-name
| keyword

indexing-method-invocation ::
primary-expression [no line-terminator here| [no whitespace here]
[indexing-argument-list” 1

method-name-except-constant ::
method-name but not constant-identifier

method-invocation-without-parentheses ::
command

| chained-command-with-do-block

| chained-command-with-do-block (. | ::) method-name
argument-without-parentheses

| return-with-argument

| break-with-argument

| next-with-argument

command ::
super-with-argument
| yield-with-argument
| method-identifier argument-without-parentheses
| primary-expression [no line-terminator here] (. | ::) method-name
argument-without-parentheses

chained-command-with-do-block ::
command-with-do-block chained-method-invocation ™

chained-method-invocation ::
(.]::) method-name
| (.| ::) method-name argument-with-parentheses

command-with-do-block ::
super-with-argument-and-do-block
| method-identifier argument-without-parentheses do-block
| primary-expression [no line-terminator here]
(.| ::) method-name argument-without-parentheses do-block

See 11.5.4.7 for method-invocation-expressions of the form local-variable-identifier.

If the argument-with-parentheses (see 11.3.2) of a primary-method-invocation is present, and the
block-argument of the argument-list in the argument-with-parentheses is present, the block of
the primary-method-invocation shall be omitted.

©ISO/IEC 2012 — All rights reserved 51

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

If the argument-without-parentheses of a command-with-do-block is present, and the block-
argument of the argument-list of the argument-without-parentheses (see 11.3.2) is present, the
do-block of the command-with-do-block shall be omitted.

If the argument-without-parentheses of a command or a command-with-do-block is present, and
if the argument-without-parentheses starts with any of &, <<, +, =, *, /., and %, and if the method-
identifier of the command or the command-with-do-block is a local-variable-identifier, then the
local-variable-identifier shall not be considered as a reference to a local variable by the steps in
11.5.4.7.2.

Semantics

A method-invocation-expression is evaluated as follows:
a) A primary-method-invocation is evaluated as follows:

1) If the primary-method-invocation is a super-with-optional-argument, evaluate it as de-
scribed in 11.3.4. The value of the primary-method-invocation is the resulting value.

2) If the primary-method-invocation is an indexing-method-invocation, evaluate it as de-
scribed in Step b). The value of the primary-method-invocation is the resulting value.

3) i) If the primary-method-invocation is a method-only-identifier, let O be the current
self and let M be the method-only-identifier. Create an empty list of arguments
L.
ii) If the method-identifier of the primary-method-invocation is present:
I) Let O be the current self and let M be the method-identifier.
IT) If the argument-with-parentheses is present, construct a list of arguments and
a block from the argument-with-parentheses as described in 11.3.2. Let L be

the resulting list. Let B be the resulting block, if any.

If the argument-with-parentheses is omitted, create an empty list of arguments
L.

III) If the block is present, let B be the block.
iii) If “.” of the primary-method-invocation is present:

I) Evaluate the primary-ezpression and let O be the resulting value. Let M be
the method-name.

IT) If the argument-with-parentheses is present, construct a list of arguments and
a block from the argument-with-parentheses as described in 11.3.2. Let L be
the resulting list. Let B be the resulting block, if any.

If the argument-with-parentheses is omitted, create an empty list of arguments
L.

III) If the block is present, let B be the block.

52 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

iv) If the :: and method-name of the primary-method-invocation are present:

I) Evaluate the primary-expression and let O be the resulting value. Let M be
the method-name.

IT) Construct a list of arguments and a block from the argument-with-parentheses
as described in 11.3.2. Let L be the resulting list. Let B be the resulting
block, if any.

III) If the block is present, let B be the block.

v) If the :: and method-name-except-constant of the primary-method-invocation are
present:

I) Evaluate the primary-expression and let O be the resulting value. Let M be
the method-name-except-constant.

II) Create an empty list of arguments L.
III) If the block is present, let B be the block.

4) Invoke the method M on O with L as the list of arguments and B, if any, as the block
(see 13.3.3). The value of the primary-method-invocation is the resulting value.

b) An indexing-method-invocation is evaluated as follows:

1) Evaluate the primary-expression. Let O be the resulting value.

2) If the indezxing-argument-list is present, construct a list of arguments from the indexing-
argument-list as described in 11.3.2. Let L be the resulting list.

3) If the indexing-argument-list is omitted, Create an empty list of arguments L.

4) Invoke the method [] on O with L as the list of arguments. The value of the indezing-
method-invocation is the resulting value.

c) A method-invocation-without-parentheses is evaluated as follows:

1) If the method-invocation-without-parentheses is a command, evaluate it as described in
Step d). The value of the method-invocation-without-parentheses is the resulting value.

2) If the method-invocation-without-parentheses is a return-with-argument, break-with-
argument or next-with-argument, evaluate it (see 11.5.2.4). By this evaluation, control
is transferred to another program construct as described in 11.5.2.4.

3) If the chained-command-with-do-block of the method-invocation-without-parentheses is
present:

i) Evaluate the chained-command-with-do-block as described in Step e). Let V be
the resulting value.

ii) If the method-name and the argument-without-parentheses of the method-invocation-
without-parentheses are present:

ISO/IEC 2012 — All rights reserved 53
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

I) Let M be the method-name.

IT) Construct a list of arguments from the argument-without-parentheses as de-
scribed in 11.3.2 and let L be the resulting list. If the block-argument of the
argument-list of the argument-without-parentheses is present, let B be the

block to which the block-argument corresponds [see 11.3.2 €) 6)].

ITI) Invoke the method M on V with L as the list of arguments and B, if any, as
the block.

IV) Replace V with the resulting value.
iii) The value of the method-invocation-without-parentheses is V.
d) A command is evaluated as follows:

1) If the command is a super-with-argument or a yield-with-argument, evaluate it as de-
scribed in 11.3.4 or 11.3.5. The value of the command is the resulting value.

2) Otherwise:
i) If the method-identifier of the command is present:

I) Let O be the current self and let M be the method-identifier.

IT) Construct a list of arguments from the argument-without-parentheses as de-
scribed in 11.3.2 and let L be the resulting list.

If the block-argument of the argument-list of the argument-without-parentheses
is present, let B be the block to which the block-argument corresponds.

ii) If the primary-expression(see 11.5), method-name, and argument-without-parentheses
of the command are present:

I) Evaluate the primary-ezpression. Let O be the resulting value. Let M be the
method-name.

IT) Construct a list of arguments from the argument-without-parentheses as de-
scribed in 11.3.2 and let L be the resulting list.

If the block-argument of the argument-list of the argument-without-parentheses
is present, let B be the block to which the block-argument corresponds.

iii) Invoke the method M on O with L as the list of arguments and B, if any, as the
block. The value of the command is the resulting value.

e) A chained-command-with-do-block is evaluated as follows:

1) Evaluate the command-with-do-block as described in Step f) and let V' be the resulting
value.

54 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) For each chained-method-invocation, in the order they appear in the program text, take
the following steps:

i) Let M be the method-name of the chained-method-invocation.

ii) If the argument-with-parentheses is present, construct a list of arguments and a
block from the argument-with-parentheses as described in 11.3.2 and let L be the
resulting list. Let B be the resulting block, if any.

If the argument-with-parentheses is omitted, create an empty list of arguments L.

iii) Invoke the method M on V with L as the list of arguments and B, if any, as the
block.

iv) Replace V with the resulting value.
3) The value of the chained-command-with-do-block is V.
f) A command-with-do-block is evaluated as follows:

1) If the command-with-do-block is a super-with-argument-and-do-block, evaluate it as
described in 11.3.4. The value of the command-with-do-block is the resulting value.

2) Otherwise:

i) If the method-identifier of the command-with-do-block is present, let O be the
current self and let M be the method-identifier.

il) If the primary-expression of the command-with-do-block is present, evaluate the
primary-expression, and let O be the resulting value and let M be the method-

name.

iii) Construct a list of arguments from the argument-without-parentheses of the command-
with-do-block and let L be the resulting list.

iv) Invoke the method M on O with L as the list of arguments and the do-block as
the block. The value of the command-with-do-block is the resulting value.

11.3.2 Method arguments

Syntax

method-argument ::=
indexing-argument-list
| argument-with-parentheses
| argument-without-parentheses

indexing-argument-list ::

command

| operator-expression-list ([no line-terminator here] ,)°

ISO/IEC 2012 — All rights reserved 55
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| operator-expression-list [no line-terminator here| , splatting-argument
| association-list ([no line-terminator here] ,)
| splatting-argument

splatting-argument ::
* operator-exrpression

operator-expression-list ::
operator-expression ([no line-terminator here| , operator-expression)*

argument-with-parentheses ::
[no line-terminator here] [no whitespace here| parentheses-and-argument

parentheses-and-argument ::
)
| ¢ argument-list)
| (operator-expression-list [no line-terminator here] , chained-command-with-do-
block)
| C chained-command-with-do-block)

argument-without-parentheses ::
[lookahead ¢ { { }| [no line-terminator here] argument-list

argument-list ::
block-argument
| splatting-argument (, block-argument)
| operator-expression-list [no line-terminator here| , association-list
([no line-terminator here] , splatting-argument)° ([no line-terminator
here] , block-argument)*
| (operator-expression-list | association-list)
([no line-terminator here] , splatting-argument)° ([no line-terminator
here] , block-argument)°
| command

block-argument ::
& operator-expression

If an argument-without-parentheses starts with a sequence of characters which is any of &, <<,
+, =, %,/ and %:

e One or more whitespace characters shall be present just before the argument-without-
parentheses.

e No whitespace shall be present just after the sequence of characters.

NOTE For example, the behavior of “x -y” is the same as “x(-y)”. The behaviors of “x-y” and
“x - y” are the same as “x() - y”.

56 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A method-argument evaluates to two values: an argument list, and a block. These two values
are used when the method is invoked. However, a method-argument does not have a block value
depending on evaluation steps.

A method-argument is evaluated as follows:
a) An indezing-argument-list is evaluated as follows:

1) Create an empty list of arguments L.

2) Evaluate the command, operator-expressions of operator-expression-lists, or the association-
list and append their values to L in the order they appear in the program text.

3) If the splatting-argument is present, evaluate it, and concatenate the resulting list of
arguments to L.

4) The argument list value of indezing-argument-list is L.
b) A splatting-argument is evaluated as follows:
1) Create an empty list of arguments L.
2) Evaluate the operator-expression. Let V be the resulting value.
3) If V is not an instance of the class Array, the behavior is unspecified.
4) Append each element of V| in the indexing order, to L.

5) The argument list value of splatting-argument is L.
¢) An argument-with-parentheses is evaluated as follows:

1) Create an empty list of arguments L.
2) If the argument-list is present, evaluate it as described in Step e), and concatenate the
resulting list of arguments to L. If the block-argument of the argument-list is present,

the block value of the argument-with-parentheses is the block value of the argument-list.

3) If the operator-expression-list is present, for each operator-expression of the operator-
expression-list, in the order they appear in the program text, take the following steps:

i) Evaluate the operator-expression. Let V be the resulting value.

ii) Append V to L.

4) If the chained-command-with-do-block is present, evaluate it. Append the resulting
value to L.

5) The argument list value of argument-with-parentheses is L.

ISO/IEC 2012 — All rights reserved 57
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) An argument-without-parentheses is evaluated as follows:

1) If the first character of the argument-without-parentheses is (, the behavior is unspec-
ified.

2) Evaluate the argument-list as described in Step e).
3) Let L be the resulting list.
e) An argument-list is evaluated as follows:
1) Create an empty list of arguments L.
2) If the command is present, evaluate it, and append the resulting value to L.

3) If the operator-expression-list is present, for each operator-expression of the operator-
expression-list, in the order they appear in the program text, take the following steps:

i) Evaluate the operator-ezpression. Let V be the resulting value.
ii) Append V to L.
4) 1If the association-list is present, evaluate it. Append the resulting value to L.

5) If the splatting-argument is present, construct a list of arguments from it and concate-
nate the resulting list to L.

6) If the block-argument is present:

i) Evaluate the operator-expression of the block-argument. Let P be the resulting
value.

ii) If P is not an instance of the class Proc, the behavior is unspecified.
iii) Otherwise, the block value of argument-list is the block which P represents.
7) The argument list value of argument-list is L.
11.3.3 Blocks

Syntax

block ::
brace-block

| do-block

brace-block ::
[no line-terminator here] { block-parameter” block-body }

do-block ::
[no line-terminator here] do block-parameter” block-body end

58 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

block-parameter ::
||
| 11

| | block-parameter-list |

block-parameter-list ::
left-hand-side
| multiple-left-hand-side

block-body ::

compound-statement

Whether the left-hand-side (see 11.4.2.4) in the block-parameter-list is allowed to be of the
following forms is implementation-defined.

e constant-identifier

e global-variable-identifier

e instance-variable-identifier

e class-variable-identifier

e primary-expression [indexing-argument-list?]

e primary-expression (. | ::) (local-variable-identifier | constant-identifier)
e :: constant-identifier

NOTE Some existing implementations allow some syntactic constructs such as constant-identifiers in a
block-parameter. Whether they are allowed is therefore implementation-defined. Future implementations
should not allow them.

Whether the grouped-left-hand-side (see 11.4.2.4) of the multiple-left-hand-side of the block-
parameter-list is allowed to be of the following form is implementation-defined.

. ((multiple-left-hand-side-item ,)*)

Semantics
A block is a procedure which is passed to a method invocation.
A block can be called either by a yield-expression (see 11.3.5) or by invoking the method call

on an instance of the class Proc which is created by an invocation of the method new on the
class Proc to which the block is passed (see 15.2.17.4.3).

A block can be called with arguments. If a block is called by a yield-expression, the arguments
to the yield-expression are used as the arguments to the block call. If a block is called by an
invocation of the method call, the arguments to the method invocation is used as the arguments

to the block call.

ISO/IEC 2012 — All rights reserved 59
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

A block is evaluated within the execution context as it exists just before the method invocation to
which the block is passed. However, the changes of variable bindings in [local-variable-bindings]
after the block is passed to the method invocation affect the execution context. Let Fj be the
possibly affected execution context.

When a block is called, the block is evaluated as follows:

a) Let F, be the current execution context. Let L be the list of arguments passed to the block.
b) Set the execution context to Ej.
c) Push an empty set of local variable bindings onto [local-variable-bindings] .

d) If the block-parameter-list in the do-block or the brace-block is present:
1) If the block-parameter-list is of the form left-hand-side or grouped-left-hand-side:

i) If the length of L is 0, let X be nil.

ii) If the length of L is 1, let X be the only element of L.

iii) If the length of L is larger than 1, the result of this step is unspecified.

iv) If the block-parameter-list is of the form left-hand-side, evaluate a single-variable-
assignment-expression (see 11.4.2.2.2) E, where the variable of E is the left-hand-
side and the value of the operator-expression of F is X.

v) If the block-parameter-list is of the form grouped-left-hand-side, evaluate a many-
to-many-assignment-statement (see 11.4.2.4) E, where the multiple-left-hand-side

of F is the grouped-left-hand-side and the value of the method-invocation-without-
parentheses or operator-expression of E is X.

2) If the block-parameter-list is of the form multiple-left-hand-side and the multiple-left-
hand-side is not a grouped-left-hand-side:

i) If the length of L is 1:

I) If the only element of L is not an instance of the class Array, the result of
this step is unspecified.

IT) Create a list of arguments Y which contains the elements of L, preserving
their order.

ii) If the length of L is 0 or larger than 1, let Y be L.

iii) Evaluate the many-to-many-assignment-statement E as described in 11.4.2.4, where
the multiple-left-hand-side of E is the block-parameter-list and the list of arguments
constructed from the multiple-right-hand-side of E is Y.

e) Evaluate the block-body. If the evaluation of the block-body:

1) is terminated by a break-expression:

60 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

i) If the method invocation with which block is passed has already terminated when
the block is called:

I) Let S be an instance of the class Symbol with name break.

IT) If the jump-argument of the break-expression is present, let V' be the value of
the jump-argument. Otherwise, let V' be nil.

IIT) Raise a direct instance of the class LocalJumpError which has two instance

variable bindings, one named @reason with the value S and the other named
Q@exit_value with the value V.

ii) Otherwise, restore the execution context to E, and terminate Step 13.3.3 i) and
take Step 13.3.3 j) of the current method invocation.

If the jump-argument of the break-expression is present, the value of the current

method invocation is the value of the jump-argument. Otherwise, the value of the
current method invocation is nil.

2) is terminated by a redo-expression, repeat Step e).

3) is terminated by a next-expression:

i) If the jump-argument of the next-expression is present, let V be the value of the
Jump-argument.

ii) Otherwise, let V be nil.

4) is terminated by a return-expression, remove the element from the top of [local-variable-
bindings] .

5) is terminated otherwise, let V' be the resulting value of the evaluation of the block-body.
f) Unless Step e) is terminated by a return-expression, restore the execution context to E,.
g) The value of calling the do-block or the brace-block is V.
11.3.4 The super expression

Syntax

super-expression =
super-with-optional-argument
| super-with-argument
| super-with-argument-and-do-block

super-with-optional-argument ::
super ([no line-terminator here| [no whitespace here | argument-with-parentheses)
block’

?

©ISO/IEC 2012 — All rights reserved 61

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
super-with-argument ::

super argument-without-parentheses

super-with-argument-and-do-block ::
super argument-without-parentheses do-block

The block-argument of the argument-list of the argument-without-parentheses (see 11.3.2) of a
super-with-argument-and-do-block shall be omitted.

Semantics

A super-expression is evaluated as follows:

a) If the current self is pushed by a singleton-class-definition (see 13.4.2), or an invocation of
one of the following methods, the behavior is unspecified:

e the method class_eval of the class Module (see 15.2.2.4.15)
e the method module_eval of the class Module (see 15.2.2.4.35)

e the method instance_eval of the class Kernel (see 15.3.1.3.18)
b) Let A be an empty list. Let B be the top of [block] .

1) If the super-expression is a super-with-optional-argument, and neither the argument-
with-parentheses nor the block is present, construct a list of arguments as follows:

i) Let M be the method which correspond to the current method invocation. Let L
be the parameter-list of the method-parameter-part of M. Let S be the set of local
variable bindings in [local-variable-bindings] which corresponds to the current
method invocation.

ii) If the mandatory-parameter-list is present in L, for each mandatory-parameter p,
take the following steps:

I) Let v be the value of the binding with name p in S.

IT) Append v to A.

iii) If the optional-parameter-list is present in L, for each optional-parameter p, take
the following steps:

I) Let n be the optional-parameter-name of p.
IT) Let v be the value of the binding with name n in S.

IIT) Append v to A.

iv) If the array-parameter is present in L:

62 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

I) Let n be the array-parameter-name of the array-parameter.

IT) Let v be the value of the binding with name n in S. Append each element of
v, in the indexing order, to A.

2) If the super-ezpression is a super-with-optional-argument with either or both of the
argument-with-parentheses and the block:

i) If the argument-with-parentheses is present, construct a list of arguments and a
block as described in 11.3.2. Let A be the resulting list. Let B be the resulting
block, if any.

ii) If the block is present, let B be the block.

3) If the super-expression is a super-with-argument, construct the list of arguments from
the argument-without-parentheses as described in 11.3.2. Let A be the resulting list. If
block-argument of the argument-list of argument-without-parentheses is present, let B
be the block constructed from the block-argument.

4) If the super-expression is a super-with-argument-and-do-block, construct a list of ar-

guments from the argument-without-parentheses as described in 11.3.2. Let A be the
resulting list. Let B be the do-block.

¢) Determine the method to be invoked as follows:

1) Let C be the current class or module. Let N be the top of [defined-method-name] .

2) If C is an instance of the class Class:

i) Search for a method binding with name N as described in Step b) of 13.3.4,
assuming that C in 13.3.4 to be C.

ii) If a binding is found and its value is not undef (see 13.1.1), let V be the value of
the binding.

iii) Otherwise:
I) Add a direct instance of the class Symbol with name N to the head of A.

IT) Invoke the method method missing (see 15.3.1.3.30) on the current self with
A as arguments and B as the block.

III) Terminate the evaluation of the super-expression. The value of the super-
expression is the resulting value of the method invocation.

3) If C is an instance of the class Module and not an instance of the class Class:
i) Let M be C and let new C be the class of the current self.
ii) Let Ly, be the included module list of C. Search for M in L,,.
iii) If M is found in L,,:

ISO/IEC 2012 — All rights reserved 63
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

I) Search for a method binding with name N in the set of bindings of instance
methods of each module in L,,. Examine modules in L,,, in reverse order,
from the module just before M to the first module in L,,.

IT) If a binding is found and its value is not undef, let V' be the value of the
binding.

III) If a binding is found and its value is undef (see 13.1.1), take the steps from
¢) 2)iii) T) to ¢) 2) iii) III).

IV) If a binding is not found and C has a direct superclass, let new C be the
superclass and take the steps from Step c) 2) i) to Step c) 2) iii).

V) If a binding is not found and C' does not have a direct superclass, take the
steps from c¢) 2) iii) I) to ¢) 2) iii) III).

iv) Otherwise, let new C be the direct superclass of C' and repeat from Step c) 3) ii).
If C does not have a direct superclass, the behavior is unspecified.

d) Take steps g), h), i), and j) of 13.3.3, assuming that A, B, M, R, and V in 13.3.3 to be A4, B,
N, the current self, and V in this subclause respectively. The value of the super-expression
is the resulting value.

11.3.5 The yield expression

Syntax

yield-expression ::=
yield-with-optional-argument
| yield-with-argument

yield-with-optional-argument ::
yield-with-parentheses-and-argument
| yield-with-parentheses-without-argument
| yield

yield-with-parentheses-and-argument ::
yield [no line-terminator here| [no whitespace here] (argument-list)

yield-with-parentheses-without-argument ::
yield [no line-terminator here] [no whitespace here] ()

yield-with-argument ::
yield argument-without-parentheses

The block-argument of the argument-list (see 11.3.2) of a yield-with-parentheses-and-argument
shall be omitted.

64 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

The block-argument of the argument-list of the argument-without-parentheses (see 11.3.2) of a
yield-with-argument shall be omitted.

Semantics

A yield-expression is evaluated as follows:
a) Let B be the top of [block]. If B is block-not-given:
1) Let S be a direct instance of the class Symbol with name noreason.
2) Let V be an implementation-defined value.
3) Raise a direct instance of the class LocalJumpError which has two instance variable
bindings, one named @reason with the value § and the other named @exit_value with
the value V.
b) A yield-with-optional-argument is evaluated as follows:
1) If the yield-with-optional-argument is of the form yield-with-parentheses-and-argument,
create a list of arguments from the argument-list as described in 11.3.2. Let L be the
list.

2) If the yield-with-optional-argument is of the form yield-with-parentheses-without-argument
or yield, create an empty list of argument L.

3) Call B with L as described in 11.3.3.
4) The value of the yield-with-optional-argument is the value of the block call.
c) A yield-with-argument is evaluated as follows:

1) Create a list of arguments from the argument-without-parentheses as described in
11.3.2. Let L be the list.

2) Call B with L as described in 11.3.3.

3) The value of the yield-with-argument is the value of the block call.
11.4 Operator expressions
11.4.1 General description

Syntax

operator-erpression ::
assignment-exrpression
| defined?-without-parentheses
| conditional-operator-expression

See 11.4.2 for assignment-expressions.

ISO/IEC 2012 — All rights reserved 65
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

NOTE 1 assignment-statement is not an operator-expression but a statement (see 12.1).

See 11.4.3.2 for defined?-without-parenthesess.

NOTE 2 defined?-with-parentheses is not an operator-expression but a primary-expression (see 11.5.1).
See 11.5.2.2.5 for conditional-operator-expressions.

11.4.2 Assignments

11.4.2.1 General description

Syntax

assignment ::=
assignment-expression
| assignment-statement

assignment-expression
single-assignment-expression
| abbreviated-assignment-expression
| assignment-with-rescue-modifier

assignment-statement ::
single-assignment-statement
| abbreviated-assignment-statement
| multiple-assignment-statement

Semantics

An assignment creates or updates variable bindings, or invokes a method whose name ends with

Evaluations of assignment-expressions and assignment-statements are described in the clauses
from 11.4.2.2 to 11.4.2.5.

11.4.2.2 Single assignments
11.4.2.2.1 General description

Syntax

single-assignment ::=
single-assignment-expression
| single-assignment-statement

single-assignment-expression
single-variable-assignment-expression

66 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

| scoped-constant-assignment-expression
| single-indexing-assignment-expression
| single-method-assignment-expression

single-assignment-statement ::
single-variable-assignment-statement
| scoped-constant-assignment-statement
| single-indexing-assignment-statement
| single-method-assignment-statement

ISO/IEC 30170:2012(E)

11.4.2.2.2 Single variable assignments

Syntax

single-variable-assignment ::=
single-variable-assignment-expression
| single-variable-assignment-statement

single-variable-assignment-expression ::

variable [no line-terminator here| = operator-expression

single-variable-assignment-statement ::

variable [no line-terminator here| = method-invocation-without-parentheses

Semantics

A single-variable-assignment is evaluated as follows:

a) Evaluate the operator-expression or the method-invocation-without-parentheses. Let V be

the resulting value.

b) 1) If the variable (see 11.5.4) is a constant-identifier:

i) Let N be the constant-identifier.

ii) If a binding with name N exists in the set of bindings of constants of the current
class or module, replace the value of the binding with V.

iii) Otherwise, create a variable binding with name N and value V in the set of

bindings of constants of the current class or module.
2) If the variable is a global-variable-identifier:

i) Let N be the global-variable-identifier.

ii) If a binding with name N exists in [global-variable-bindings] , replace the value
of the binding with V. However, if the binding is one of the bindings added by a

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

67

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

conforming processor when initializing the execution context (see 7.2), the behavior
is unspecified.

iii) Otherwise, create a variable binding with name N and value V in [global-variable-
bindings] .

3) If the variable is a class-variable-identifier:

i) Let C be the first class or module in the list at the top of [class-module-list] which
is not a singleton class.

Let CS be the set of classes which consists of C' and all the superclasses of C. Let
MS be the set of modules which consists of all the modules in the included module
lists of all classes in CS. Let CM be the union of C'S and MS.

Let N be the class-variable-identifier.

ii) If exactly one of the classes or modules in CM has a binding with name N in the
set of bindings of class variables, let B be that binding.

If more than one class or module in CM has bindings with name N in the set
of bindings of class variables, choose a binding B from those bindings in an
implementation-defined way.
Replace the value of B with V.

iii) If none of the classes or modules in CM has a binding with name N in the set of

bindings of class variables, create a variable binding with name N and value V in
the set of bindings of class variables of C.

4) If the variable is an instance-variable-identifier:

i) Let N be the instance-variable-identifier.

ii) If a binding with name N exists in the set of bindings of instance variables of the
current self, replace the value of the binding with V.

iii) Otherwise, create a variable binding with name N and value V in the set of
bindings of instance variables of the current self.

5) If the variable is a local-variable-identifier:
i) Let N be the local-variable-identifier.
ii) Search for a binding of a local variable with name N as described in 9.2.
iii) If a binding is found, replace the value of the binding with V.

iv) Otherwise, create a variable binding with name N and value V in the current set
of local variable bindings.

c) The value of the single-variable-assignment is V.

68 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.4.2.2.3 Scoped constant assignments

Syntax

scoped-constant-assignment ::=
scoped-constant-assignment-expression
| scoped-constant-assignment-statement

scoped-constant-assignment-expression ::
primary-expression [no line-terminator here] [no whitespace here]| :: constant-
identifier
[no line-terminator here| = operator-expression
| :: constant-identifier [no line-terminator here| = operator-expression

scoped-constant-assignment-statement ::
primary-expression [no line-terminator here] [no whitespace here] :: constant-
identifier
[no line-terminator here] = method-invocation-without-parentheses
| :: constant-identifier [no line-terminator here | = method-invocation-without-parentheses

Semantics

A scoped-constant-assignment is evaluated as follows:

a) If the primary-expression is present, evaluate it and let M be the resulting value. Otherwise,
let M be the class Object.

b) If M is an instance of the class Module:
1) Let N be the constant-identifier.

2) Evaluate the operator-expression or the method-invocation-without-parentheses. Let V
be the resulting value.

3) If a binding with name N exists in the set of bindings of constants of M, replace the
value of the binding with V.

4) Otherwise, create a variable binding with name N and value V in the set of bindings
of constants of M.

5) The value of the scoped-constant-assignment is V.
c) If M is not an instance of the class Module, raise a direct instance of the class TypeError.

11.4.2.2.4 Single indexing assignments

Syntax

ISO/IEC 2012 — All rights reserved 69
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

single-indexing-assignment 1=
single-indezring-assignment-expression
| single-indexing-assignment-statement

single-indexing-assignment-expression ::
primary-expression [no line-terminator here] [no whitespace here| [indexing-
argument-list”]
[no line-terminator here| = operator-expression

single-indexing-assignment-statement ::
primary-expression [no line-terminator here] [no whitespace here| [indexing-
argument-list”]
[no line-terminator here| = method-invocation-without-parentheses

Semantics

A single-indexing-assignment is evaluated as follows:

a) Evaluate the primary-expression. Let O be the resulting value.

b) Construct a list of arguments from the indezing-argument-list as described in 11.3.2. Let L
be the resulting list.

c) Evaluate the operator-expression or method-invocation-without-parentheses. Let V be the
resulting value.

d) Append V to L.

e) Invoke the method [1= on O with L as the list of arguments.
f) The value of the single-indexing-assignment is V.

11.4.2.2.5 Single method assignments

Syntax

single-method-assignment ::=
single-method-assignment-expression
| single-method-assignment-statement

single-method-assignment-expression ::
primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here| = operator-expression
| primary-expression [no line-terminator here] . constant-identifier
[no line-terminator here| = operator-expression

70 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

single-method-assignment-statement ::
primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here] = method-invocation-without-parentheses
| primary-expression [no line-terminator here| . constant-identifier
[no line-terminator here| = method-invocation-without-parentheses

Semantics

A single-method-assignment is evaluated as follows:

a) Evaluate the primary-expression. Let O be the resulting value.

b) Evaluate the operator-expression or method-invocation-without-parentheses. Let V be the
resulting value.

c) Let M be the local-variable-identifier or constant-identifier. Let N be the concatenation of
M and =.

d) Invoke the method whose name is N on O with a list of arguments which contains only one
value V.

e) The value of the single-method-assignment is V.
11.4.2.3 Abbreviated assignments
11.4.2.3.1 General description

Syntax

abbreviated-assignment 1=
abbreviated-assignment-expression
| abbreviated-assignment-statement

abbreviated-assignment-expression ::
abbreviated-variable-assignment-expression
| abbreviated-indezing-assignment-expression
| abbreviated-method-assignment-expression

abbreviated-assignment-statement ::
abbreviated-variable-assignment-statement
| abbreviated-indexing-assignment-statement
| abbreviated-method-assignment-statement

11.4.2.3.2 Abbreviated variable assignments

Syntax

©ISO/IEC 2012 — All rights reserved 71

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

abbreviated-variable-assignment :=

abbreviated-variable-assignment-expression
| abbreviated-variable-assignment-statement

abbreviated-variable-assignment-expression ::

variable [no line-terminator here| assignment-operator operator-expression

abbreviated-variable-assignment-statement ::

variable [no line-terminator here| assignment-operator
method-invocation-without-parentheses

Semantics

An abbreviated-variable-assignment is evaluated as follows:

a)

b)

i)

Evaluate the variable as a variable reference (see 11.5.4). Let V be the resulting value.

If the assignment-operator is &&=, and if V is a falseish object, then the value of the
abbreviated-variable-assignment is V.

If the assignment-operator is |1=, and if V is a trueish object, then the value of the
abbreviated-variable-assignment is V.

Otherwise, evaluate the operator-expression or the method-invocation-without-parentheses.
Let W be the resulting value.

Let OP be the assignment-operator-name of the assignment-operator.
Let X be the operator-expression of the form V OP W.

Let I be the variable of the abbreviated-variable-assignment-expression or the abbreviated-
variable-assignment-statement.

Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is I and
the operator-expression is X.

The value of the abbreviated-variable-assignment is the resulting value of the evaluation.

11.4.2.3.3 Abbreviated indexing assignments

Syntax

72

abbreviated-indexing-assignment 1=

abbreviated-indexing-assignment-expression
| abbreviated-indexring-assignment-statement

abbreviated-indexing-assignment-expression ::

primary-expression [no line-terminator here] [no whitespace here| [indexing-

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

- 47
argument-list*]
[no line-terminator here] assignment-operator operator-expression

abbreviated-indezring-assignment-statement ::

primary-expression [no line-terminator here] [no whitespace here| [indexing-
argument-list”]
[no line-terminator here | assignment-operator method-invocation-without-parentheses

Semantics

An abbreviated-indezing-assignment is evaluated as follows:

a)

b)

Evaluate the primary-expression. Let O be the resulting value.

Construct a list of arguments from the indezing-argument-list as described in 11.3.2. Let L
be the resulting list.

Invoke the method [] on O with L as the list of arguments. Let V' be the resulting value.

If the assignment-operator is &&=, and if V is a falseish object, then the value of the
abbreviated-indezing-assignment is V.

If the assignment-operator is | 1=, and if V is a trueish object, then the value of the
abbreviated-indexing-assignment is V.

Otherwise, evaluate the operator-expression or method-invocation-without-parentheses. Let
W be the resulting value.

Let OP be the assignment-operator-name of the assignment-operator.

Evaluate the operator-expression of the form V. OP W. Let X be the resulting value.
Append X to L.

Invoke the method [1= on O with L as the list of arguments.

The value of the abbreviated-indexing-assignment is X.

11.4.2.3.4 Abbreviated method assignments

Syntax

abbreviated-method-assignment ::=

abbreviated-method-assignment-expression
| abbreviated-method-assignment-statement

abbreviated-method-assignment-expression ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here| assignment-operator operator-expression

ISO/IEC 2012 — All rights reserved 73
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| primary-expression [no line-terminator here] . constant-identifier
[no line-terminator here] assignment-operator operator-expression

abbreviated-method-assignment-statement ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here | assignment-operator method-invocation-without-parentheses
| primary-expression [no line-terminator here] . constant-identifier
[no line-terminator here | assignment-operator method-invocation-without-parentheses

Semantics

An abbreviated-method-assignment is evaluated as follows:

a)

b)

j)

Evaluate the primary-expression. Let O be the resulting value.
Create an empty list of arguments L. Invoke the method whose name is the local-variable-
identifier or the constant-identifier on O with L as the list of arguments. Let V be the

resulting value.

If the assignment-operator is &&=, and if V is a falseish object, then the value of the
abbreviated-method-assignment is V.

If the assignment-operator is | 1=, and if V is a trueish object, then the value of the
abbreviated-method-assignment is V.

Otherwise, evaluate the operator-expression or the method-invocation-without-parentheses.
Let W be the resulting value.

Let OP be the assignment-operator-name of the assignment-operator.
Evaluate the operator-expression of the form V. OP W. Let X be the resulting value.

Let M be the local-variable-identifier or the constant-identifier. Let N be the concatenation
of M and =.

Invoke the method whose name is N on O with a list of arguments which contains only one
value X.

The value of the abbreviated-method-assignment is X.

11.4.2.4 Multiple assignments

Syntax

74

multiple-assignment-statement ::

many-to-one-assignment-statement
| one-to-packing-assignment-statement
| many-to-many-assignment-statement

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

many-to-one-assignment-statement ::
left-hand-side [no line-terminator here| = multiple-right-hand-side

one-to-packing-assignment-statement ::
packing-left-hand-side [no line-terminator here| =
(method-invocation-without-parentheses | operator-expression)

many-to-many-assignment-statement ::
multiple-left-hand-side [no line-terminator here| = multiple-right-hand-side
| (multiple-left-hand-side but not packing-left-hand-side)
[no line-terminator here| =
(method-invocation-without-parentheses | operator-expression)

left-hand-side ::
variable
| primary-expression [no line-terminator here] [no whitespace here| [indexing-
argument-list”]
| primary-expression [no line-terminator here]
(.]::) (local-variable-identifier | constant-identifier)
| :: constant-identifier

multiple-left-hand-side ::
(multiple-left-hand-side-item [no line-terminator here| ,)™ multiple-left-hand-
side-item”
| (multiple-left-hand-side-item [no line-terminator here] ,)* packing-left-hand-side”
| packing-left-hand-side
| grouped-left-hand-side

packing-left-hand-side ::
* left-hand-side”

grouped-left-hand-side ::
(multiple-left-hand-side)

multiple-left-hand-side-item ::
left-hand-side
| grouped-left-hand-side

multiple-right-hand-side ::
operator-expression-list ([no line-terminator here| , splatting-right-hand-side)’
| splatting-right-hand-side

splatting-right-hand-side ::
splatting-argument

ISO/IEC 2012 — All rights reserved 75
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A multiple-assignment-statement is evaluated as follows:
a) A many-to-one-assignment-statement is evaluated as follows:
1) Construct a list of values L from the multiple-right-hand-side as described below.

i) If the operator-expression-list is present, evaluate its operator-expressions in the
order they appear in the program text. Let LI be a list which contains the resulting
values, preserving their order.

ii) If the operator-expression-list is omitted, create an empty list of values L1.

iii) If the splatting-right-hand-side is present, construct a list of values from its splatting-
argument as described in 11.3.2 and let L2 be the resulting list.

iv) If the splatting-right-hand-side is omitted, create an empty list of values L2.
v) The result is the concatenation of L1 and L2.

2) If the length of L is 0 or 1, let A be an implementation-defined value.

3) If the length of L is larger than 1, create a direct instance of the class Array and store
the elements of L in it, preserving their order. Let A be the instance of the class Array.

4) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is
the left-hand-side and the value of its operator-expression is A.

5) The value of the many-to-one-assignment-statement is A.
b) A one-to-packing-assignment-statement is evaluated as follows:

1) Evaluate the method-invocation-without-parentheses or the operator-expression. Let V
be the resulting value.

2) If V is an instance of the class Array, let A be a new direct instance of the class Array
which contains only one element V itself, or all the elements of V in the same order

in V. Which is chosen is implementation-defined.

3) If V is not an instance of the class Array, create a direct instance A of the class Array
which contains only one value V.

4) 1If the left-hand-side of the packing-left-hand-side is present, evaluate a single-variable-
assignment-expression (see 11.4.2.2.2) where its variable is the left-hand-side and the
value of the operator-expression is A. Otherwise, skip this step.

5) The value of the one-to-packing-assignment-statement is A.

c) A many-to-many-assignment-statement is evaluated as follows:

1) If the multiple-right-hand-side is present, construct a list of values from it [see a) 1)]
and let R be the resulting list.

76 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) If the multiple-right-hand-side is omitted:

i) Evaluate the method-invocation-without-parentheses or the operator-expression.
Let V be the resulting value.

ii) If V is not an instance of the class Array, the behavior is unspecified.

iii) Create a list of arguments R which contains all the elements of V, preserving their
order.

3) i) Create an empty list of variables L.
ii) For each multiple-left-hand-side-item, in the order they appear in the program
text, append the left-hand-side or the grouped-left-hand-side of the multiple-left-
hand-side-item to L.

iii) If the packing-left-hand-side of the multiple-left-hand-side is present, append it to
L.

iv) If the multiple-left-hand-side is a grouped-left-hand-side, append the grouped-left-
hand-side to L.

4) For each element L; of L, in the same order in L, take the following steps:
i) Let i be the index of L; within L. Let Ng be the number of elements of R.
ii) If L; is a left-hand-side:
I) 1If 7 is larger than Ng, let V be nil.
IT) Otherwise, let V' be the ith element of R.
III) Evaluate the single-variable-assignment of the form L; = V.
iii) If L; is a packing-left-hand-side and its left-hand-side is present:

I) 1If i is larger than Ng, create an empty direct instance of the class Array. Let
A be the instance.

IT) Otherwise, create a direct instance of the class Array which contains elements
in R whose index is equal to, or larger than 7, in the same order they are stored

in R. Let A be the instance.

IIT) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its
variable is the left-hand-side and the value of the operator-expression is A.

iv) If L; is a grouped-left-hand-side:
I) If i is larger than Ng, let V be nil.

IT) Otherwise, let V be the ith element of R.

ISO/IEC 2012 — All rights reserved 77
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

IITI) Evaluate a many-to-many-assignment-statement where its multiple-left-hand-
side is the multiple-left-hand-side of the grouped-left-hand-side and its multiple-
right-hand-side is V.

11.4.2.5 Assignments with rescue modifiers

Syntax

assignment-with-rescue-modifier ::
left-hand-side [no line-terminator here| =
operator-expression [no line-terminator here| rescue operator-expression

Semantics

An assignment-with-rescue-modifier is evaluated as follows:

a) Evaluate the operator-expression;. Let V be the resulting value.

b) If an exception is raised and not handled during the evaluation of the operator-expressiony,
and if the exception is an instance of the class StandardError, evaluate the operator-
expressions and replace V with the resulting value.

c) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is the

left-hand-side and the value of the operator-expression is V. The value of the assignment-
with-rescue-modifier is the resulting value of the evaluation.

11.4.3 Unary operator expressions
11.4.3.1 General description

Syntax

unary-operator-erpression 1=
UNATY-MINUS-ETPTESSION
| unary-expression

UNATY-MINUS-ETPTESSION
DOWET-ELPTESSION,
| = power-expression

UNATY-eTpression
PTIMaTy-eTpression
| ~ unary-expression
| + unary-expressiono
| ' unary-expressions

78 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A unary-operator-expression is evaluated as follows:

a) A unary-minus-expression of the form power-expression is evaluated as described in 11.4.4

e).
b) A unary-minus-expression of the form - power-expression is evaluated as follows:
1) Evaluate the power-expression. Let X be the resulting value.

2) Create an empty list of arguments L. Invoke the method -@ on X with L as the list
of arguments. The value of the unary-minus-expression is the resulting value of the
invocation.

c) A unary-expression of the form ~ unary-ezpression, is evaluated as follows:

1) Evaluate the unary-expression;. Let X be the resulting value.

2) Create an empty list of arguments L. Invoke the method ~ on X with L as the list of
arguments. The value of the unary-expression is the resulting value of the invocation.

d) A unary-expression of the form + unary-ezpressions is evaluated as follows:

1) Evaluate the unary-expressions. Let X be the resulting value.

2) Create an empty list of arguments L. Invoke the method +@ on X with L as the list of
arguments. The value of the unary-expression is the resulting value of the invocation.

e) A unary-expression of the form ! unary-expressions is evaluated as described in 11.2.

11.4.3.2 The defined? expression

Syntax

defined?-expression 1=
defined ?-with-parentheses
| defined ?-without-parentheses

defined ?-with-parentheses ::
defined? (expression)

defined ?-without-parentheses ::
defined? operator-expression

Semantics

A defined?-expression is evaluated as follows:

ISO/IEC 2012 — All rights reserved 79
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Let E be the expression of the defined?-with-parentheses or the operator-expression of the
defined ?-without-parentheses.

b) 1If E is a constant-identifier:
1) Search for a binding of a constant with name E with the same evaluation steps for
constant-identifier as described in 11.5.4.2. However, a direct instance of the class

NameError shall not be raised when a binding is not found.

2) If a binding is found, the value of the defined?-expression is an implementation-defined
value, which shall be a trueish object.

3) Otherwise, the value of the defined?-expression is nil.
c) If FE is a global-variable-identifier:

1) If a binding with name E exists in [global-variable-bindings] , the value of the defined?-
expression is an implementation-defined value, which shall be a trueish object.

2) Otherwise, the value of the defined?-expression is nil.
d) If E is a class-variable-identifier:

1) Let C be the current class or module. Let CS be the set of classes which consists of C
and all the superclasses of C. Let MS be the set of modules which consists of all the
modules in the included module lists of all classes in CS. Let CM be the union of CS
and MS.

2) If any of the classes or modules in CM has a binding with name E in the set of bindings
of class variables, the value of the defined?-expression is an implementation-defined
value, which shall be a trueish object.

3) Otherwise, the value of the defined?-expression is nil.

e) If E is an instance-variable-identifier:

1) If a binding with name E exists in the set of bindings of instance variables of the
current self, the value of the defined?-expression is an implementation-defined value,
which shall be a trueish object.

2) Otherwise, the value of the defined?-expression is nil.

f) If F is a local-variable-identifier:

1) If the local-variable-identifier is a reference to a local variable (see 11.5.4.7.2), the value
of the defined?-expression is an implementation-defined value, which shall be a trueish
object.

2) Otherwise, search for a method binding with name F, starting from the current class
or module as described in 13.3.4.

i) If the binding is found and its value is not undef, the value of the defined?-
expression is an implementation-defined value, which shall be a trueish object.

80 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) Otherwise, the value of the defined?-expression is nil.
g) Otherwise, the value of the defined?-expression is implementation-defined.
11.4.4 Binary operator expressions

Syntax

binary-operator-expression 1=
equality-expression

equality-expression ::
relational-expression
| relational-expression
| relational-expression

[no line-terminator here| <=> relational-expression
[no line-terminator here] == relational-expression
| relational-expression [no line-terminator here| === relational-expression
| relational-expression [no line-terminator here] != relational-expression
[no line-terminator here]

[]

| relational-expression =" relational-expression

| relational-expression [no line-terminator here] !~ relational-expression

relational-expression ::
bitwise- OR-expression
| relational-expression [no line-terminator here

| > bitwise-OR-expression
| relational-expression [no line-terminator here]

]

]

= bitwise-OR-expression
bitwise-OR-expression
= bitwise-OR-expression

AN N V V

| relational-expression [no line-terminator here
| relational-expression [no line-terminator here

bitwise-OR-expression ::
bitwise-AND-expression
| bitwise-OR-expression [no line-terminator here] | bitwise-AND-expression
| bitwise-OR-expression [no line-terminator here| ~ bitwise-AND-expression

bitwise-AND-expression ::
bitwise-shift-expression
| bitwise-AND-expression [no line-terminator here| & bitwise-shift-expression

bitwise-shift-expression ::
additive-expression

| bitwise-shift-expression [no line-terminator here| << additive-expression

| bitwise-shift-expression [no line-terminator here| >> additive-expression

additive-expression ::
multiplicative-expression
| additive-expression [no line-terminator here| + multiplicative-expression
| additive-expression [no line-terminator here| - multiplicative-expression

multiplicative-expression ::
UNATY-MINUS-ETPTeSSION

©ISO/IEC 2012 — All rights reserved 81

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| multiplicative-expression [no line-terminator here| * unary-minus-expression
| multiplicative-expression [no line-terminator here| / unary-minus-expression
| multiplicative-expression [no line-terminator here] % unary-minus-expression

power-expression ::
UNAry-exrpression
| unary-expression [no line-terminator here] ** power-expression

binary' OperatOT‘ o=
<=> ‘ == ‘ I= ‘ === | =" | 1~ | > | >= | < | <=
|

If there is a whitespace character just before any of the following operators, there shall be one
or more whitespace characters just after the operator.

e & of a bitwise-AND-expression
e << of a bitwise-shift-expression
e + of a additive-expression

e - of a additive-expression

e x of a multiplicative-expression
e/ of a multiplicative-expression
e %, of a multiplicative-expression

NOTE For example, “x -y” is not an additive-expression. However, if “x” is a reference to a local
variable, a conforming processor may evaluate “x -y” as an additive-expression of the form “x - y”. If

“x” is not a reference to a local variable, “x -y” shall be evaluated not as “x() - y” but as a command

(11.3.1) of the form “x(-y)”.

Semantics

An equality-expression is evaluated as follows:
a) If the equality-expression is of the form z !'= y, take the following steps:
1) Evaluate z. Let X be the resulting value.
2) Evaluate y. Let Y be the resulting value.
3) Invoke the method == on X with Y as an argument. If the resulting value is a trueish
object, the value of the equality-expression is false. Otherwise, the value of the equality-
expression is true.

b) The steps in Step f) may be taken instead of Step a).

In this case, the following conditions shall be satisfied:

82 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e The operator != is included in operator-method-name.
e An instance method !'= is defined in the class Object, one of its superclasses, or a
module included in the class Object. The method != shall take one argument and

shall return the value of the equality-ezpression in Step a) 3), where let X and Y be
the receiver and the argument, respectively.

c) If the equality-expression is of the form z !~ y, take the following steps:

1) Evaluate z. Let X be the resulting value.
2) Evaluate y. Let Y be the resulting value.
3) Invoke the method =~ on X with Y as an argument. If the resulting value is a trueish

object, the value of the equality-expression is false. Otherwise, the value of the equality-
expression is true.

d) The steps in Step f) may be taken instead of Step c). In this case, the following conditions
shall be satisfied:

e The operator !~ is included in operator-method-name.
e An instance method !~ is defined in the class Object, one of its superclasses, or a
module included in the class Object. The method !~ shall take one argument and

shall return the value of the equality-expression in Step c) 3), where let X and Y be
the receiver and the argument, respectively.

e) If the equality-expression is an unary-minus-expression and not a power-expression, evalu-
ate it as described in 11.4.3. If the equality-expression is an unary-minus-expression and
a power-expression, evaluate the power-expression by taking the following steps and the
resulting value is the value of the equality-expression.

1) If the power-expression is a unary-expression, evaluate it as described in 11.4.3 and the
resulting value is the value of the power-expression.

2) If the power-expression is a power-expression of the form unary-erpression ** power-
exTPression:

i) If the unary-expression is of the form - unsigned-number:
I) Evaluate the unsigned-number and let X be the resulting value.
II) Evaluate the power-ezpression and let Y be the resulting value.

IIT) Invoke the method whose name is “**” on X with Y as an argument. Let Z
be the resulting value.

IV) Invoke the method whose name is “-@Q” on Z with no arguments. The value
of the equality-expression is the resulting value of the invocation.

ii) Otherwise:

ISO/IEC 2012 — All rights reserved 83
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
I) Evaluate the unary-ezpression and let X be the resulting value.
IT) Evaluate the power-ezpression and let Y be the resulting value.

III) Invoke the method whose name is “**” on X with Y as an argument. The

value of the power-expression is the resulting value.

f) Otherwise, for the equality-expression of the form z binary-operator y, take the following
steps:

1) Evaluate z. Let X be the resulting value.
2) Evaluate y. Let Y be the resulting value.

3) Invoke the method whose name is the binary-operator on X with Y as an argument.
The value of the equality-expression is the resulting value of the invocation.

11.5 Primary expressions
11.5.1 General description

Syntax

PTUMATY-ETPTESSION,
class-definition
| singleton-class-definition
| module-definition
| method-definition
| singleton-method-definition
| yield-with-optional-argument
| if-expression
| unless-expression
| case-expression
| while-expression
| until-expression
| for-expression
| return-without-argument
| break-without-argument
| next-without-argument
| redo-expression
| retry-expression
| begin-expression
| grouping-expression
| variable-reference
| scoped-constant-reference
| array-constructor
| hash-constructor
| literal
| defined ?-with-parentheses
| primary-method-invocation

84 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

See 13.2.2 for class-definitions.

See 13.4.2 for singleton-class-definitions.
See 13.1.2 for module-definitions.

See 13.3.1 for method-definitions.

See 13.4.3 for singleton-method-definitions.
See 11.3.5 for yield-with-optional-arguments.
See 8.7.6 for literals.

See 11.4.3.2 for defined?-with-parenthesess.
See 11.3 for primary-method-invocations.
11.5.2 Control structures

11.5.2.1 General description

Syntax

control-structure ::=
conditional-expression
| iteration-expression
| jump-expression
| begin-expression

11.5.2.2 Conditional expressions
11.5.2.2.1 General description

Syntax

conditional-expression 1=
if-expression
| unless-expression
| case-expression
| conditional-operator-ezpression

11.5.2.2.2 The if expression

Syntax

ISO/IEC 2012 — All rights reserved 85
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

if-expression ::
. . , o
if expression then-clause elsif-clause™ else-clause” end

then-clause ::
separator compound-statement
| sepamtor? then compound-statement

else-clause ::
else compound-statement

elsif-clause ::
elsif expression then-clause

Semantics

An if-expression is evaluated as follows:

a) Evaluate the expression. Let V be the resulting value.

b) If V is a trueish object, evaluate the compound-statement of the then-clause. The value of
the if-expression is the resulting value. In this case, elsif-clauses and the else-clause, if any,
are not evaluated.

c) If V is a falseish object, and if there is no elsif-clause and no else-clause, then the value of
the if-expression is nil.

d) If V is a falseish object, and if there is no elsif-clause but there is an else-clause, then
evaluate the compound-statement of the else-clause. The value of the if-expression is the
resulting value.

e) If V is a falseish object, and if there are one or more elsif-clauses, evaluate the sequence of
elsif-clauses as follows:

1) Evaluate the expression of each elsif-clause in the order they appear in the program
text, until there is an elsif-clause for which expression evaluates to a trueish object.
Let T be this elsif-clause.

2) If T exists, evaluate the compound-statement of its then-clause. The value of the if-
expression is the resulting value. Other elsif-clauses and an else-clause following T, if

any, are not evaluated.

3) If T does not exist, and if there is an else-clause, then evaluate the compound-statement
of the else-clause. The value of the if-expression is the resulting value.

4) If T does not exist, and if there is no else-clause, then the value of the if-expression is
nil.

86 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.5.2.2.3 The unless expression

Syntax

unless-expression ::
: ?
unless expression then-clause else-clause” end

Semantics

An unless-expression is evaluated as follows:

a) Evaluate the expression. Let V be the resulting value.
b) If V is a falseish object, evaluate the compound-statement of the then-clause. The value
of the unless-expression is the resulting value. In this case, the else-clause, if any, is not

evaluated.

c) If V is a trueish object, and if there is no else-clause, then the value of the unless-expression
is nil.

d) If V is a trueish object, and if there is an else-clause, then evaluate the compound-statement
of the else-clause. The value of the unless-expression is the resulting value.

11.5.2.2.4 The case expression

Syntax

case-expression ::
case-expression-with-expression
| case-expression-without-expression

case-expression-with-expression ::
; ot + ?
case expression separator-list’ when-clause™ else-clause” end

case-expression-without-expression ::
. ? ?
case separator-list* when-clause™ else-clause’ end

when-clause ::
when when-argument then-clause

when-argument ::
operator-expression-list ([no line-terminator here] , splatting-argument)’
| splatting-argument

ISO/IEC 2012 — All rights reserved 87
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A case-expression is evaluated as follows:

a) If the case-expression is a case-expression-with-expression, evaluate the expression. Let V
be the resulting value.

b) The meaning of the phrase “O is matching” in Step c) is defined as follows:

1) If the case-expression is a case-expression-with-expression, invoke the method === on
O with a list of arguments which contains only one value V. O is matching if and only
if the resulting value is a trueish object.

2) If the case-expression is a case-expression-without-expression, O is matching if and only
if O is a trueish object.

c) Take the following steps:

1) Search the when-clauses in the order they appear in the program text for a matching
when-clause as follows:

i) If the operator-expression-list of the when-argument is present:

I) For each of its operator-expressions, evaluate it and test if the resulting value
is matching.

IT) If a matching value is found, other operator-expressions, if any, are not eval-
uated.

ii) If no matching value is found, and the splatting-argument (see 11.3.2) is present:

I) Construct a list of values from it as described in 11.3.2. For each element of
the resulting list, in the same order in the list, test if it is matching.

IT) If a matching value is found, other values, if any, are not evaluated.

iii) A when-clause is considered to be matching if and only if a matching value is found
in its when-argument. Later when-clauses, if any, are not tested in this case.

2) If one of the when-clauses is matching, evaluate the compound-statement of the then-
clause of this when-clause. The value of the case-expression is the resulting value.

3) If none of the when-clauses is matching, and if there is an else-clause, then evaluate
the compound-statement of the else-clause. The value of the case-expression is the
resulting value.

4) Otherwise, the value of the case-ezpression is nil.

11.5.2.2.5 Conditional operator expression

Syntax

88 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

conditional-operator-expression ::
range-expression
| range-expression [no line-terminator here| ? operator-expressioni [no line-terminator
here| : operator-expression o

Semantics

A conditional-operator-expression of the form range-expression 7 operator-expressiony : operator-
expressions is evaluated as follows:

a) Evaluate the range-expression.

b) If the resulting value is a trueish object, evaluate the operator-expression;. The value of
the conditional-operator-expression is the resulting value of the evaluation.

c) Otherwise, evaluate the operator-expressiony. The value of the conditional-operator-expression
is the resulting value of the evaluation.

11.5.2.3 Iteration expressions
11.5.2.3.1 General description

Syntax

iteration-expression ::=
while-expression
| until-expression
| for-expression
| while-modifier-statement
| until-modifier-statement

Each iteration-expression has a condition expression and a body.

The condition expression of an iteration-expression is the iteration-expression’s part evaluated to
determine the condition of the iteration of the iteration-expression. The condition expression of a
while-expression (see 11.5.2.3.2), until-expression (see 11.5.2.3.3), for-expression (see 11.5.2.3.4),
while-modifier-statement (see 12.5) or until-modifier-statement (see 12.6) is its expression.

The body of an iteration-expression is the iteration-expression’s part evaluated iteratively. The
body of a while-expression, until-expression, or for-expression is its compound-statement. The
body of a while-modifier-statement or until-modifier-statement is its statement.

See 12.5 for while-modifier-statements.

See 12.6 for until-modifier-statements.

ISO/IEC 2012 — All rights reserved 89
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.5.2.3.2 The while expression

Syntax

while-expression ::
while expression do-clause end

do-clause ::
separator compound-statement
| [no line-terminator here] do compound-statement

Semantics

A while-expression is evaluated as follows:

a)

90

Evaluate the ezpression, and take the following steps:

1)

3)

If the evaluation of the ezpression is terminated by a break-expression (see 11.5.2.4.3),
terminate the evaluation of the while-expression.

If the jump-argument of the break-expression is present, the value of the while-expression
is the value of the jump-argument. Otherwise, the value of the while-expression is nil.

If the evaluation of the ezpression is terminated by a next-expression (see 11.5.2.4.4)
or redo-expression (see 11.5.2.4.5), continue processing from the beginning of Step a).

Otherwise, let V be the resulting value of the expression.

If V is a falseish object, terminate the evaluation of the while-expression. The value of the
while-expression is nil.

If V is a trueish object, evaluate the compound-statement of the do-clause, and take the
following steps:

1)

If the evaluation of the compound-statement is terminated by a break-expression, ter-
minate the evaluation of the while-expression.

If the jump-argument of the break-expression is present, the value of the while-expression
is the value of the jump-argument. Otherwise, the value of the while-expression is nil.

If the evaluation of the compound-statement is terminated by a next-expression, con-
tinue processing from Step a).

If the evaluation of the compound-statement is terminated by a redo-expression, con-
tinue processing from Step c).

Otherwise, continue processing from Step a).

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.5.2.3.3 The until expression

Syntax

until-expression ::
until expression do-clause end

Semantics

An until-expression is evaluated as follows:
a) Evaluate the expression, and take the following steps:

1) If the evaluation of the expression is terminated by a break-expression (see 11.5.2.4.3),
terminate the evaluation of the until-expression.

If the jump-argument of the break-expression is present, the value of the until-expression
is the value of the jump-argument. Otherwise, the value of the until-expression is nil.

2) If the evaluation of the expression is terminated by a next-ezpression (see 11.5.2.4.4)
or redo-expression (see 11.5.2.4.5), continue processing from the beginning of Step a).

3) Otherwise, let V be the resulting value of the expression.

b) If V is a trueish object, terminate the evaluation of the until-expression. The value of the
until-expression is nil.

c) If V is a falseish object, evaluate the compound-statement of the do-clause, and take the
following steps:

1) If the evaluation of the compound-statement is terminated by a break-expression, ter-
minate the evaluation of the until-expression.

If the jump-argument of the break-expression is present, the value of the until-expression
is the value of the jump-argument. Otherwise, the value of the until-expression is nil.

2) If the evaluation of the compound-statement is terminated by a next-expression, con-
tinue processing from Step a).

3) If the evaluation of the compound-statement is terminated by a redo-expression, con-
tinue processing from Step c).

4) Otherwise, continue processing from Step a).
11.5.2.3.4 The for expression

Syntax

©ISO/IEC 2012 — All rights reserved 91

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

for-expression ::
for for-variable [no line-terminator here] in expression do-clause end

for-variable ::
left-hand-side
| multiple-left-hand-side

Semantics

A for-expression is evaluated as follows:

a) Evaluate the expression. If the evaluation of the expression is terminated by a break-
expression, next-expression, or redo-expression, the behavior is unspecified. Otherwise, let
O be the resulting value.

b) Let E be the primary-method-invocation of the form primary-expression [no line-terminator
here] . each do | block-parameter-list | block-body end, where the value of the primary-

expression is O, the block-parameter-list is the for-variable, the block-body is the compound-
statement of the do-clause.

Evaluate E; however, if a block whose block-body is the compound-statement of the do-clause
of the for-expression is called during this evaluation, the steps in 11.3.3 except the Step ¢)

and the Step e) 4) shall be taken for the evaluation of this call.

c¢) The value of the for-expression is the resulting value of the evaluation.

11.5.2.4 Jump expressions
11.5.2.4.1 General description

Syntax

Jjump-expression 1=
return-erpression
| break-expression
| next-expression
| redo-expression
| retry-expression

Semantics

Jump-expressions are used to terminate the evaluation of a method-body, a block-body, the con-
ditional expression or the body of an iteration-expression, or the compound-statement of the
then-clause of a rescue-clause. The evaluation of the program construct terminated by a jump-
expression and the evaluations of program constructs in the program construct which are under
evaluation when the evaluation of the jump-expression has been started are terminated in the
middle of the evaluation steps, and have no resulting values.

92 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

In this International Standard, the current block or the current iteration-expression refers
to the following:

a) If the current method invocation does not exist, the block or iteration-expression whose
evaluation has been started most recently among blocks and iteration-expressions which
are under evaluation.

b) 1If the current method invocation exists, the block or iteration-expression whose evaluation
has been started most recently among blocks and iteration-expressions which are under
evaluation and whose evaluation has been started during the evaluation of the current

method invocation.

In the both cases, the current block or the current iteration-expression does not exist if such a
block or iteration-expression does not exist.

11.5.2.4.2 The return expression

Syntax

return-expression 1=
return-without-argument
| return-with-arqument

return-without-argument ::
return

return-with-argument ::
return jump-argument

Jump-argument ::
[no line-terminator here] argument-list

The block-argument of the argument-list (see 11.3.2) of a jump-argument shall be omitted.

Semantics
Return-expressions and jump-arguments are evaluated as follows:
a) A return-ezpression is evaluated as follows:
1) Let M be the method-body which corresponds to the current method invocation. Let
L be the block which is under evaluation and is created by the method lambda of the
module Kernel (see 15.3.1.2.6). If there is more than one such blocks, let L be the one

whose evaluation has started most recently.

2) If M nor L does not exist, or only M exists and the current method invocation has
already terminated:

i) Let S be a direct instance of the class Symbol with name return.

ISO/IEC 2012 — All rights reserved 93
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) If the jump-argument of the return-expression is present, let V be the value of the
jump-argument. Otherwise, let V' be nil.

iii) Raise a direct instance of the class LocalJumpError which has two instance vari-

able bindings, one named @reason with the value S and the other named @exit_value
with the value V.

3) Evaluate the jump-argument, if any, as described in Step b).

4) If the evaluation of M has started later than that of L:

i) If there are block-bodys which include the return-expression and are included in M,
terminate the evaluations of such block-bodys, from innermost to outermost (see
11.3.3).

ii) Terminate the evaluation of M (see 13.3.3).
5) Otherwise:

i) If L is the current block, terminate the evaluation of L [see 15.3.1.2.6 b)].

ii) Otherwise, the behavior is unspecified.
b) A jump-argument is evaluated as follows:
1) If the jump-argument is a splatting-argument:

i) Construct a list of values from the splatting-argument as described in 11.3.2 and
let L be the resulting list.

ii) If the length of L is 0 or 1, the value of the jump-argument is an implementation-
defined value.

iii) If the length of L is larger than 1, create a direct instance of the class Array

and store the elements of L in it, preserving their order. The value of the jump-
argument is the instance.

2) Otherwise:

i) Construct a list of values from the argument-list as described in 11.3.2 and let L
be the resulting list.

ii) If the length of L is 1, the value of the jump-argument is the only element of L.
iii) If the length of L is larger than 1, create a direct instance of the class Array

and store the elements of L in it, preserving their order. The value of the jump-
argument is the instance of the class Array.

11.5.2.4.3 The break expression
Syntax

94 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

break-expression 1=
break-without-argument
| break-with-argument

break-without-argument ::
break

break-with-argument ::
break jump-argument

Semantics

A break-expression is evaluated as follows:

a) Evaluate the jump-argument, if any, as described in 11.5.2.4.2 b).

b) If the current block is present, terminate the evaluation of the block-body of the current
block (see 11.3.3).

c) If the current iteration-expression is present, terminate the evaluation of the condition
expression of the current iteration-expression (see 11.5.2.3) when the break-ezpression is in
the condition expression, or terminate the body of the current iteration-expression when

the break-expression is in the body.

d) If the current block or the current iteration-expression is not present:

1) Let S be a direct instance of the class Symbol with name break.

2) If the jump-argument of the break-expression is present, let V be the value of the
jump-argument. Otherwise, let V be nil.

3) Raise a direct instance of the class LocalJumpError which has two instance variable

bindings, one named @reason with the value § and the other named @exit_value with
the value V.

11.5.2.4.4 The next expression

Syntax

next-expression =
next-without-argument
| next-with-argument

next-without-argument ::
next

ISO/IEC 2012 — All rights reserved 95
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

next-with-argument ::
next jump-argument

Semantics

A next-expression is evaluated as follows:

a) Evaluate the jump-argument, if any, as described in 11.5.2.4.2 b).

b) If the current block is present, terminate the evaluation of the block-body of the current
block (see 11.3.3).

c) If the current iteration-expression is present, terminate the evaluation of the condition
expression of the current iteration-expression (see 11.5.2.3) when the next-expression is in
the condition expression, or terminate the body of the current iteration-expression when

the next-expression is in the body.

d) If the current block or the current iteration-expression is not present:

1) Let S be a direct instance of the class Symbol with name next.

2) If the jump-argument of the next-expression is present, let V be the value of the jump-
argument. Otherwise, let V be nil.

3) Raise a direct instance of the class LocalJumpError which has two instance variable

bindings, one named @reason with the value § and the other named @exit_value with
the value V.

11.5.2.4.5 The redo expression

Syntax

redo-expression ::
redo

Semantics

A redo-expression is evaluated as follows:

a) If the current block is present, terminate the evaluation of the block-body of the current
block (see 11.3.3).

b) If the current iteration-expression is present, terminate the evaluation of the condition
expression of the current iteration-expression (see 11.5.2.3) when the redo-expression is in
the condition expression, or terminate the body of the current iteration-expression when

the redo-expression is in the body.

c) If the current block or the current iteration-expression is not present:

96 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) Let S be a direct instance of the class Symbol with name redo.
2) Raise a direct instance of the class LocalJumpError which has two instance variable

bindings, one named @reason with the value S and the other named @exit_value with
the value nil.

11.5.2.4.6 The retry expression

Syntax

retry-expression ::
retry

Semantics

A retry-expression is evaluated as follows:

a) If the current method invocation (see 13.3.3) exists, let M be the method-body which cor-
responds to the current method invocation. Otherwise, let M be the program (see 10.1).

b) Let E be the innermost rescue-clause in M which encloses the retry-expression. If such a
rescue-clause does not exist, the behavior is unspecified.

c) Terminate the evaluation of the compound-statement of the then-clause of E (see 11.5.2.5).
11.5.2.5 The begin expression

Syntax

begin-expression ::
begin body-statement end

body-statement ::
* ? ?
compound-statement rescue-clause™ else-clause’ ensure-clause’

rescue-clause ::
. . . . ?
rescue [no line-terminator here] exception-class-list
. . , o
exception-variable-assignment® then-clause

exception-class-list ::
operator-erpression
| multiple-right-hand-side

exception-variable-assignment ::

=> left-hand-side

ISO/IEC 2012 — All rights reserved 97
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ensure-clause ::
ensure compound-statement

Semantics

The value of a begin-expression is the resulting value of the body-statement.

A body-statement is evaluated as follows:

a) Evaluate the compound-statement of the body-statement.

b) If no exception is raised, or all the raised exceptions are handled during Step a):

1) If the else-clause is present, evaluate the else-clause as described in 11.5.2.2.2.

2) If the ensure-clause is present, evaluate its compound-statement. The value of the
ensure-clause is the value of this evaluation.

3) If both the else-clause and the ensure-clause are present, the value of the body-statement
is the value of the ensure-clause. If only one of these clauses is present, the value of
the body-statement is the value of the clause.

4) If neither the else-clause nor the ensure-clause is present, the value of the body-
statement is the value of its compound-statement.

c) If an exception is raised and not handled during Step a), test each rescue-clause, if any, in
the order it occurs in the program text. The test determines whether the rescue-clause can
handle the exception as follows:

1) Let E be the exception raised.

2) If the exception-class-list is omitted in the rescue-clause, and if E is an instance of the
class StandardError, the rescue-clause handles E.

3) If the exception-class-list of the rescue-clause is present:

i) If the exception-class-list is of the form operator-expression, evaluate the operator-
expression. Create an empty list of values, and append the value of the operator-
expression to the list.

ii) If the exception-class-list is of the form multiple-right-hand-side, construct a list
of values from the multiple-right-hand-side (see 11.4.2.4).

iii) Let L be the list created by evaluating the exception-class-list as above. For each
element D of L:

I) If D is neither the class Exception nor a subclass of the class Exception,
raise a direct instance of the class TypeError.

II) If F is an instance of D, the rescue-clause handles E. In this case, any re-
maining rescue-clauses in the body-statement are not tested.

98 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) If a rescue-clause R which can handle E is found:

1) If the exception-variable-assignment of R is present, evaluate it in the same way as
a multiple-assignment-statement of the form left-hand-side = multiple-right-hand-side
where the value of multiple-right-hand-side is FE.

2) Evaluate the compound-statement of the then-clause of R. If this evaluation is termi-
nated by a retry-expression, continue processing from Step a). Otherwise, let V be the

value of this evaluation.

3) If the ensure-clause is present, evaluate it. The value of the body-statement is the value
of the ensure-clause.

4) If the ensure-clause is omitted, the value of the body-statement is V.

e) If no rescue-clause is present or if a rescue-clause which can handle E is not found:
1) If the ensure-clause is present, evaluate it.
2) The value of the body-statement is unspecified.

The ensure-clause of a body-statement, if any, is always evaluated, even when the evaluation of
body-statement is terminated by a jump-expression.

11.5.3 Grouping expression

Syntax

grouping-exrpression
(expression)
| ¢ compound-statement)

Semantics

A grouping-expression is evaluated as follows:

a) Evaluate the expression or the compound-statement.

b) The value of the grouping-expression is the resulting value.
11.5.4 Variable references

11.5.4.1 General description

Syntax

variable-reference ::
variable
| pseudo-variable

ISO/IEC 2012 — All rights reserved 99
© g

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

variable ::
constant-identifier
| global-variable-identifier
| class-variable-identifier
| instance-variable-identifier
| local-variable-identifier

scoped-constant-reference ::
primary-expression [no line-terminator here] [no whitespace here]| :: constant-
identifier
| :: constant-identifier

See from 11.5.4.2 to 11.5.4.7 for variables and scoped-constant-references.
See 11.5.4.8 for pseudo-variables.

11.5.4.2 Constants

A constant-identifier is evaluated as follows:

a) Let N be the constant-identifier.

b) Search for a binding of a constant with name N as described below.
As soon as the binding is found in any of the following steps, the evaluation of the constant-
identifier is terminated and the value of the constant-identifier is the value of the binding
found.

c) Let L be the top of [class-module-list] . Search for a binding of a constant with name N in
each element of L from start to end, including the first element, which is the current class
or module, but except for the last element, which is the class Object.

d) If a binding is not found, let C be the current class or module.

Let L be the included module list of C. Search each element of L in the reverse order for a
binding of a constant with name V.

e) If the binding is not found:
1) If C is an instance of the class Class:

i) If C does not have a direct superclass, create a direct instance of the class Symbol
with name N, and let R be that instance. Invoke the method const missing
on the current class or module with R as the only argument. The value of the
constant-identifier is the resulting value.

ii) If C has a direct superclass, let S be the direct superclass of C.

iii) Search for a binding of a constant with name N in S.

100 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

iv) If the binding is not found, let L be the included module list of S and search each
element of L in the reverse order for a binding of a constant with name N.

v) If the binding is not found, let C' be the direct superclass of S. Continue processing
from Step e) 1) i).

2) If C is not an instance of the class Class:

i) Search for a binding of a constant with name N in the class Object.

ii) If the binding is not found, let L be the included module list of the class Object
and search each element of L in the reverse order for a binding of a constant with
name N.

iii) If the binding is not found, create a direct instance of the class Symbol with name
N, and let R be that instance. Invoke the method const_missing on the current
class or module with R as the only argument. The value of the constant-identifier
is the resulting value.

11.5.4.3 Scoped constants

A scoped-constant-reference is evaluated as follows:

a) If the primary-expression is present, evaluate it and let C' be the resulting value. Otherwise,
let C' be the class Object.

b) If C is not an instance of the class Module, raise a direct instance of the class TypeError.
c) Otherwise:
1) Let N be the constant-identifier.

2) If a binding with name N exists in the set of bindings of constants of C, the value of
the scoped-constant-reference is the value of the binding.

3) Otherwise:

i) Let L be the included module list of C. Search each element of L in the reverse
order for a binding of a constant with name N.

ii) If the binding is found, the value of the scoped-constant-reference is the value of
the binding.

iii) Otherwise, if C'is an instance of the class Class, search for a binding of a constant
with name N from Step e) of 11.5.4.2.

iv) Otherwise, create a direct instance of the class Symbol with name N, and let R
be that instance. Invoke the method const missing on (' with R as the only
argument.

11.5.4.4 Global variables

A global-variable-identifier is evaluated as follows:

©ISO/IEC 2012 — All rights reserved 101

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Let N be the global-variable-identifier.

b) If a binding with name N exists in [global-variable-bindings] , the value of global-variable-
identifier is the value of the binding. However, if the binding is one of the bindings added
by a conforming processor when initializing the execution context (see 7.2), the behavior is

unspecified.

¢) Otherwise, the value of global-variable-identifier is nil.
11.5.4.5 Class variables

A class-variable-identifier is evaluated as follows:

a) Let N be the class-variable-identifier. Let C be the first class or module in the list at the
top of [class-module-list] which is not a singleton class.

b) Let CS be the set of classes which consists of C' and all the superclasses of C. Let MS be
the set of modules which consists of all the modules in the included module list of all classes

in CS. Let CM be the union of CS and MS.

c) If a binding with name N exists in the set of bindings of class variables of only one of the
classes or modules in CM, let V' be the value of the binding.

d) If more than two classes or modules in CM have a binding with name N in the set of
bindings of class variables, let V' be the value of one of these bindings. Which binding is
selected is implementation-defined.

e) If none of the classes or modules in CM has a binding with name N in the set of bindings
of class variables, let S be a direct instance of the class Symbol with name N and raise a

direct instance of the class NameError which has S as its name attribute.

f) The value of the class-variable-identifier is V.
11.5.4.6 Instance variables
An instance-variable-identifier is evaluated as follows:

a) Let N be the instance-variable-identifier.

b) If a binding with name N exists in the set of bindings of instance variables of the current
self, the value of the instance-variable-identifier is the value of the binding.

c) Otherwise, the value of the instance-variable-identifier is nil.

11.5.4.7 Local variables or method invocations
11.5.4.7.1 General description

An occurrence of a local-variable-identifier in a variable-reference is evaluated as either a refer-
ence to a local variable or an argumentless method invocation.

102 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.5.4.7.2 Determination of the type of local variable identifiers

Whether the occurrence of a local-variable-identifier I is a reference to a local variable or a
method invocation is determined as follows:

a) Let P be the point of the program text where I occurs.

b) Let S be the innermost local variable scope which encloses P and which does not correspond
to a block (see 9.2).

c) Let R be the region of the program text between the beginning of S and P.

d) If the same identifier as I occurs as a reference to a local variable in variable-reference in
R, then [is a reference to a local variable.

e) If the same identifier as I occurs in one of the forms below in R, then I is a reference to a
local variable.

° mandatory-parameter

° optional-parameter-name

e array-parameter-name

e proc-parameter-name

e wariable of left-hand-side

e wariable of single-variable-assignment-expression

e wariable of single-variable-assignment-statement

e wariable of abbreviated-variable-assignment-expression

e wariable of abbreviated-variable-assignment-statement
f) Otherwise, I is a method invocation.

NOTE In cases of an occurrence of a local-variable-identifier in other than a wvariable-reference, the
above steps are also applied if it cannot be determined by only syntactic rules whether the occurrence is
a reference to a local variable or a method invocation.

11.5.4.7.3 Local variables

If a local-variable-identifier is a reference to a local variable, it is evaluated as follows:

a) Let N be the local-variable-identifier.

b) Search for a binding of a local variable with name N as described in 9.2.

c) If a binding is found, the value of local-variable-identifier is the value of the binding.

d) Otherwise, the value of local-variable-identifier is nil.

©ISO/IEC 2012 — All rights reserved 103

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

11.5.4.7.4 Method invocations
If a local-variable-identifier is a method invocation, it is evaluated as follows:
a) Let N be the local-variable-identifier.

b) Create an empty list of arguments L, and evaluate a method invocation with the current
self as the receiver, N as the method name and L as the list of arguments (see 13.3.3).

11.5.4.8 Pseudo variables
11.5.4.8.1 General description

Syntax

pseudo-variable ::
nil-expression
| true-expression
| false-expression
| self-expression

NOTE A pseudo-variable has a similar form to a local-variable-identifier, but is not a variable.
11.5.4.8.2 The nil expression

Syntax

nil-expression ::
nil

Semantics

A nil-expression evaluates to nil, which is the only instance of the class NilClass (see 6.6).
11.5.4.8.3 The true expression and the false expression

Syntax

true-expression ::
true

false-expression ::
false

104 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A true-expression evaluates to true, which is the only instance of the class TrueClass. A
false-expression evaluates to false, which is the only instance of the class FalseClass (see 6.6).

11.5.4.8.4 The self expression

Syntax

self-expression ::
self

Semantics

A self-expression evaluates to the value of the current self.
11.5.5 Object constructors
11.5.5.1 Array constructor

Syntax

array-constructor ::
[indexing-arqgument-list”]

Semantics

An array-constructor is evaluated as follows:

a) If there is an indexing-argument-list, construct a list of arguments from the indezxing-
argument-list as described in 11.3.2. Let L be the resulting list.

b) Otherwise, create an empty list of values L.

c) Create a direct instance of the class Array (see 15.2.12) which stores the values in L in the
same order they are stored in L. Let O be the instance.

d) The value of the array-constructor is O.
11.5.5.2 Hash constructor

Syntax

hash-constructor ::
{ (association-list [no line-terminator here] ,”)" }

association-list ::
association ([no line-terminator here] , association)*

©ISO/IEC 2012 — All rights reserved 105

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

association ::
association-key [no line-terminator here| => association-value

association-key ::
operator-erpression

association-value ::
operator-erpression

Semantics

a) A hash-constructor is evaluated as follows:

1) If there is an association-list, evaluate the association-list. The value of the hash-
constructor is the resulting value.

2) Otherwise, create an empty direct instance of the class Hash (see 15.2.13). The value
of the hash-constructor is the resulting instance.

b) An association-list is evaluated as follows:
1) Create an empty direct instance H of the class Hash.

2) For each association A;, in the order it appears in the program text, take the following
steps:

i) Evaluate the operator-expression of the association-key of A;. Let K; be the re-
sulting value.

ii) Evaluate the operator-expression of the association-value. Let V; be the resulting
value.

iii) Store a pair of K; and V; in H by invoking the method [1= on H with K; and V;
as the arguments.

3) The value of the association-list is H.
11.5.5.3 Range expression

Syntax

range-expression ::
operator-OR-expression
| operator-OR-expression [no line-terminator here| range-operator operator-OR-
ExTPTession o

range-operator ::

106 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Semantics

A range-expression of the form operator-OR-expressiony range-operator operator-OR-expressions
is evaluated as follows:

a) Evaluate the operator-OR-expressiony. Let A be the resulting value.
b) Evaluate the operator-OR-expressions. Let B be the resulting value.

c) If the range-operator is the terminal “..”, construct a list L which contains three arguments:
A, B, and false.
If the range-operator is the terminal “...”
ments: A, B, and true.

, construct a list L which contains three argu-

d) Invoke the method new on the class Range (see 15.2.14) with L as the list of arguments.
The value of the range-expression is the resulting value.

12 Statements
12.1 General description

Syntax

statement ::

expression-statement

| alias-statement

| undef-statement

| if-modifier-statement

| unless-modifier-statement

| while-modifier-statement

| until-modifier-statement

| rescue-modifier-statement

| assignment-statement

Semantics

See 13.3.6 for alias-statements.

See 13.3.7 for undef-statements.

See 11.4.2 for assignment-statements.
12.2 Expression statement

Syntax

©ISO/IEC 2012 — All rights reserved 107

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

expression-statement ::
exTPTession

Semantics

An expression-statement is evaluated as follows:

a) Evaluate the expression.

b) The value of the expression-statement is the resulting value.
12.3 The if modifier statement

Syntax

if-modifier-statement ::
statement [no line-terminator here] if expression

Semantics

An if-modifier-statement of the form S if E, where S is the statement and E is the expression,
is evaluated as follows:

a) FEvaluate the if-expression of the form if E then S end.
b) The value of the if-modifier-statement is the resulting value.
12.4 The unless modifier statement

Syntax

unless-modifier-statement ::
statement [no line-terminator here] unless expression

Semantics

An unless-modifier-statement of the form S unless E, where S is the statement and F is the
expression, is evaluated as follows:

a) Evaluate the unless-expression of the form unless F then S end.
b) The value of the unless-modifier-statement is the resulting value.
12.5 The while modifier statement

Syntax

108 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

while-modifier-statement ::
statement [no line-terminator here] while ezpression

Semantics

A while-modifier-statement of the form S while E, where S is the statement and F is the
expression, is evaluated as follows:

a) If S is a begin-expression, the behavior is implementation-defined.
b) Evaluate the while-expression of the form while F do S end.

c) The value of the while-modifier-statement is the resulting value.
12.6 The until modifier statement

Syntax

until-modifier-statement ::
statement [no line-terminator here] until ezpression

Semantics

An until-modifier-statement of the form S until E, where S is the statement and F is the
expression, is evaluated as follows:

a) If S is a begin-expression, the behavior is implementation-defined.
b) Evaluate the until-expression of the form until E do S end.

c) The value of the until-modifier-statement is the resulting value.
12.7 The rescue modifier statement

Syntax

rescue-modifier-statement ::
main-statement-of-rescue-modifier-statement [no line-terminator here]
rescue fallback-statement-of-rescue-modifier-statement

main-statement-of-rescue-modifier-statement ::
statement

fallback-statement-of-rescue-modifier-statement ::
statement but not statement-not-allowed-in-fallback-statement

©ISO/IEC 2012 — All rights reserved 109

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

statement-not-allowed-in-fallback-statement ::

keyword-AND-expression

| keyword-OR-expression

| if-modifier-statement

| unless-modifier-statement

| while-modifier-statement

| until-modifier-statement

| rescue-modifier-statement

Semantics

A rescue-modifier-statement is evaluated as follows:

a) Evaluate the main-statement-of-rescue-modifier-statement. Let V be the resulting value.

b) If a direct instance of the class StandardError is raised and not handled in Step a), evaluate
fallback-statement-of-rescue-modifier-statement. The value of the rescue-modifier-statement
is the resulting value.

c) If no instances of the class Exception are raised in Step a), or all the instances of the

class Exception raised in Step a) are handled in Step a), the value of the rescue-modifier-
statement is V.

13 Classes and modules

13.1 Modules

13.1.1 General description

Every module is an instance of the class Module (see 15.2.2). However, not every instance of the
class Module is a module because the class Module is a superclass of the class Class, an instance
of which is not a module, but a class.

Modules have the following attributes:

Included module list: A list of modules included in the module. Module inclusion is
described in 13.1.3.

Constants: A set of bindings of constants.

A binding of a constant is created by the following program constructs:
o Assignments (see 11.4.2)

e Module-definitions (see 13.1.2)

e Class-definitions (see 13.2.2)

Class variables: A set of bindings of class variables. A binding of a class variable is
created by an assignment (see 11.4.2).

110 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Instance methods: A set of method bindings. A method binding is created by a method-
definition (see 13.3.1), a singleton-method-definition (see 13.4.3), an alias-statement (see
13.3.6) or an undef-statement (see 13.3.7). The value of a method binding may be undef,
which is the flag indicating that a method cannot be invoked (see 13.3.7).

13.1.2 Module definition

Syntax

module-definition ::
module module-path module-body end

module-path ::
top-module-path
| module-name
| nested-module-path

module-name ::
constant-identifier

top-module-path ::
11 module-name

nested-module-path ::
primary-expression [no line-terminator here] :: module-name

module-body ::
body-statement

Semantics

A module-definition is evaluated as follows:

a) Determine the class or module C in which a binding with name module-name is to be
created or modified as follows:

1) If the module-path is of the form top-module-path, let C' be the class Object.
2) If the module-path is of the form module-name, let C be the current class or module.

3) If the module-path is of the form nested-module-path, evaluate the primary-expression.
If the resulting value is an instance of the class Module, let C be the instance. Other-
wise, raise a direct instance of the class TypeError.

b) Let N be the module-name.

©ISO/IEC 2012 — All rights reserved 111

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) If a binding with name N exists in the set of bindings of constants of C, let B be this
binding. If the value of B is a module, let M be that module. Otherwise, raise a direct
instance of the class TypeError.

2) Otherwise, create a direct instance M of the class Module. Create a variable binding
with name N and value M in the set of bindings of constants of C.

c) Modify the execution context as follows:

1) Create a new list which has the same members as that of the list at the top of [class-
module-list], and add M to the head of the newly created list. Push the list onto
[class-module-list] .

2) Push M onto [self].

3) Push the public visibility onto [default-method-visibility] .

4) Push an empty set of bindings onto [local-variable-bindings] .

d) Evaluate the body-statement (see 11.5.2.5) of the module-body. The value of the module-
definition is the resulting value of the body-statement.

e) Restore the execution context by removing the elements from the tops of [class-module-list] ,
[self] , [default-method-visibility] , and [local-variable-bindings] .

13.1.3 Module inclusion

Modules and classes can be extended by including other modules into them.

When a module is included, the instance methods (see 13.3.1), the class variables (see 11.5.4.5),
and the constants (see 11.5.4.2) of the included module are available to the including class or

module.

Modules and classes can include other modules by invoking the method include (see 15.2.2.4.27)
or the method extend (see 15.3.1.3.13).

A module M is included in another module N if and only if M is an element of the included
module list of N. A module M is included in a class C if and only if M is an element of the
included module list of C, or M is included in one of the superclasses of C.

13.2 Classes

13.2.1 General description

Every class is an instance of the class Class (see 15.2.3), which is a direct subclass of the class
Module.

Classes have the same set of attributes as modules. In addition, every class has at most one
single direct superclass.

13.2.2 Class definition
Syntax

112 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

class-definition ::
class class-path [no line-terminator here] (< superclass)* separator
class-body end

class-path
top-class-path
| class-name
| nested-class-path

class-name ::
constant-identifier

top-class-path ::
:: class-name

nested-class-path ::
primary-expression [no line-terminator here] :: class-name

superclass ::
exTPression

class-body ::
body-statement

Semantics

A class-definition is evaluated as follows:

a) Determine the class or module M in which the binding with name class-name is to be
created or modified as follows:

1) If the class-path is of the form top-class-path, let M be the class Object.

2) If the class-path is of the form class-name, let M be the current class or module.

3) If the class-path is of the form nested-class-path, evaluate the primary-expression. If
the resulting value is an instance of the class Module, let M be the instance. Otherwise,
raise a direct instance of the class TypeError.

b) Let N be the class-name.

1) If a binding with name N exists in the set of bindings of constants of M, let B be that
binding.

i) If the value of B is an instance of the class Class, let C' be the instance. Otherwise,
raise a direct instance of the class TypeError.

©ISO/IEC 2012 — All rights reserved 113

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) If the superclass is present, evaluate it. If the resulting value does not correspond
to the direct superclass of C, raise a direct instance of the class TypeError.

2) Otherwise, create a direct instance of the class Class. Let C be that class.
i) If the superclass is present, evaluate it. If the resulting value is not an instance
of the class Class, raise a direct instance of the class TypeError. If the value of
the superclass is a singleton class or the class Class, the behavior is unspecified.

Otherwise, set the direct superclass of C' to the value of the superclass.

ii) If the superclass of the class-definition is omitted, set the direct superclass of C
to the class Object.

iii) Create a singleton class, and associate it with C. It shall have the singleton class
of the direct superclass of C' as one of its superclasses.

iv) Create a variable binding with name N and value C in the set of bindings of
constants of M.

c¢) Modify the execution context as follows:

1) Create a new list which has the same members as that of the list at the top of [class-
module-list] , and add C to the head of the newly created list. Push the list onto
[class-module-list] .

2) Push C onto [self] .

3) Push the public visibility onto [default-method-visibility] .

4) Push an empty set of bindings onto [local-variable-bindings] .

d) Evaluate the body-statement (see 11.5.2.5) of the class-body. The value of the class-definition
is the resulting value of the body-statement.

e) Restore the execution context by removing the elements from the tops of [class-module-list] ,
[self] , [default-method-visibility] , and [local-variable-bindings] .

13.2.3 Inheritance

A class inherits attributes of its superclasses. Inheritance means that a class implicitly contains
all attributes of its superclasses, as described below:

e Constants and class variables of superclasses can be referred to (see 11.5.4.2 and 11.5.4.5).
e Singleton methods of superclasses can be invoked (see 13.4).

e Instance methods defined in superclasses can be invoked on an instance of their subclasses
(see 13.3.3).

13.2.4 Instance creation

A direct instance of a class can be created by invoking the method new (see 15.2.3.3.3) on the
class.

114 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

13.3 Methods
13.3.1 Method definition

Syntax

method-definition ::
def defined-method-name [no line-terminator here] method-parameter-part
method-body end

defined-method-name ::
method-name
| assignment-like-method-identifier

method-body ::
body-statement

The following constructs shall not be present in the method-parameter-part or the method-body:
e A class-definition.

e A module-definition.

e A single-variable-assignment, where its variable is a constant-identifier.

e A scoped-constant-assignment.

e A multiple-assignment-statement in which there exists a left-hand-side of any of the follow-
ing forms:

— constant-identifier;

— primary-expression [no line-terminator here] (. | : :) (local-variable-identifier | constant-
identifier);

— :: constant-identifier.

However, those constructs may occur within a singleton-class-definition in the method-parameter-
part or the method-body.

Semantics

A method is defined by a method-definition or a singleton-method-definition (see 13.4.3), and has
the method-parameter-part and the method-body of the method-definition or singleton-method-
definition. The method-body is evaluated when the method is invoked (see 13.3.3). The evalu-
ation of the method-body is the evaluation of its body-statement (see 11.5.2.5). In addition, a
method has the following attributes:

Class module list: The list of classes and modules which is the top element of [class-
module-list] when the method is defined.

©ISO/IEC 2012 — All rights reserved 115

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Defined name: The name with which the method is defined.

Visibility: The visibility of the method (see 13.3.5).

A class or a module can define a new method with the same name as the name of a method in
one of its superclasses or included modules of the class or module. In that case, the new method
is said to override the method in the superclass or the included module.

A method-definition is evaluated as follows:

a) Let N be the defined-method-name.

b) Create a method U defined by the method-definition. Initialize the attributes of U as
follows:

e The class module list attribute is the element at the top of [class-module-list] .

e The defined name attribute is N.

e The visibility attribute is:
— If the current class or module is a singleton class, then the current visibility.
— Otherwise, if N is initialize or initialize_copy, then the private visibility.
— Otherwise, the current visibility.

c) If a method binding with name N exists in the set of bindings of instance methods of the
current class or module, let V' be the value of that binding.

1) If V is undef, the evaluation of the method-definition is implementation-defined.
2) Replace the value of the binding with U.

d) Otherwise, create a method binding with name N and value U in the set of bindings of
instance methods of the current class or module.

e) The value of the method-definition is implementation-defined.
13.3.2 Method parameters

Syntax

method-parameter-part ::
(parameter-list”)
| pammeter—list? separator

parameter-list ::
mandatory-parameter-list (, optional-parameter-list)’
(, array-parameter)’ (, proc-parameter)’

116 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

| optional-parameter-list (, array-parameter) (, proc-parameter)’
| array-parameter (, proc-parameter)’
| proc-parameter

mandatory-parameter-list ::
mandatory-parameter
| mandatory-parameter-list , mandatory-parameter

mandatory-parameter ::
local-variable-identifier

optional-parameter-list ::
optional-parameter
| optional-parameter-list , optional-parameter

optional-parameter ::
optional-parameter-name = default-parameter-expression

optional-parameter-name ::
local-variable-identifier

default-parameter-expression ::
operator-erpression

array-parameter ::
* array-parameter-name
‘ *

array-parameter-name ::
local-variable-identifier

proc-parameter ::
& proc-parameter-name

proc-parameter-name ::
local-variable-identifier

All the local-variable-identifiers of mandatory-parameters, optional-parameter-names, the array-
parameter-name, and the proc-parameter-name in a parameter-list shall be different.

Semantics

There are four kinds of parameters as described below. How those parameters are bound to the
actual arguments is described in 13.3.3.

©ISO/IEC 2012 — All rights reserved 117

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Mandatory parameters: These parameters are represented by mandatory-parameters.
For each mandatory parameter, a corresponding actual argument shall be given when the
method is invoked.

Optional parameters: These parameters are represented by optional-parameters. Each
optional parameter consists of a parameter name represented by optional-parameter-name
and an expression represented by default-parameter-expression. For each optional parame-
ter, when there is no corresponding argument in the list of arguments given to the method
invocation, the value of the default-parameter-expression is used as the value of the argu-
ment.

An array parameter: This parameter is represented by array-parameter-name. Let N be
the number of arguments, excluding a block-argument, given to a method invocation. If N
is more than the sum of the number of mandatory parameters and optional parameters, this
parameter is bound to a direct instance of the class Array containing the extra arguments
excluding a block-argument. Otherwise, the parameter is bound to an empty direct instance
of the class Array. If an array-parameter is of the form “*” those extra arguments are
ignored.

A proc parameter: This parameter is represented by proc-parameter-name. The param-

eter is bound to a direct instance of the class Proc which represents the block passed to the
method invocation.

13.3.3 Method invocation
The way in which a list of arguments is created is described in 11.3.

Given the receiver R, the method name M, and the list of arguments A, take the following steps:

a) If the method is invoked with a block, let B be the block. Otherwise, let B be block-not-
given.

b) Let C be the singleton class of R if R has a singleton class. Otherwise, let C' be the class
of R.

c) Search for a method binding with name M, starting from C' as described in 13.3.4.

d) If a binding is found and its value is not undef, let V' be the value of the binding.

e) Otherwise, if M is method missing, the behavior is unspecified. If M is not method missing,
add a direct instance of the class Symbol with name M to the head of A, and invoke the
method method missing (see 15.3.1.3.30) on R with A as arguments and B as the block.
Let O be the resulting value, and go to Step j).

f) Check the visibility of V to see whether the method can be invoked (see 13.3.5). If the
method cannot be invoked, add a direct instance of the class Symbol with name M to the
head of A, and invoke the method method missing on R with A as arguments and B as

the block. Let O be the resulting value, and go to Step j).

g) Modify the execution context as follows:
1) Push the class module list of V' onto [class-module-list] .

118 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) Push R onto [self] .

3) Push M onto [invoked-method-name] .

4) Push the public visibility to [default-method-visibility] .
5) Push the defined name of V onto [defined-method-name] .
6) Push B onto [block] .

7) Push an empty set of local variable bindings onto [local-variable-bindings] .
h) Evaluate the method-parameter-part of V as follows:

1) Let L be the parameter-list of the method-parameter-part.

2) Let P, P,, and P, be the mandatory-parameters of the mandatory-parameter-list,
the optional-parameters of the optional-parameter-list, and the array-parameter of L,
respectively. Let Na, Np.,,, and Np, be the number of elements of A, P,,, and P,
respectively. If there are no mandatory-parameters or optional-parameters, let Np,,
and Np, be 0. Let S, be the current set of local variable bindings.

3) If N4 is smaller than Np,,, raise a direct instance of the class ArgumentError.

4) If the method does not have P, and N4 is larger than the sum of Np,, and Np,, raise
a direct instance of the class ArgumentError.

5) Otherwise, for each ith argument A4; in A, in the same order in A, take the following
steps:

i) Let P; be the ith mandatory-parameter or optional-parameter in the order it ap-
pears in L.

ii) If such P; does not exist, go to Step h) 6).
iii) If P; is a mandatory parameter, let n be the mandatory-parameter. If P; is an op-

tional parameter, let n be the optional-parameter-name. Create a variable binding
with name n and value A; in Sp.

6) If N4 is larger than the sum of Np,, and Np,, and P, exists:

i) Create a direct instance X of the class Array whose length is the number of extra
arguments.

ii) Store each extra arguments into X, preserving the order in which they occur in
the list of arguments.

iii) Let n be the array-parameter-name of P,.

iv) Create a variable binding with name n and value X in 5.

7) If N4 is smaller than the sum of Np,, and Np,:

©ISO/IEC 2012 — All rights reserved 119

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

i) For each optional parameter Pp; to which no argument corresponds, evaluate the
default-parameter-expression of Pp;, and let X be the resulting value.

ii) Let n be the optional-parameter-name of Po;.
iii) Create a variable binding with name n and value X in 5.
8) If N4 is smaller than or equal to the sum of Np,, and Np,, and P, exists:
i) Create an empty direct instance X of the class Array.
ii) Let n be the array-parameter-name of P,.
iii) Create a variable binding with name n and value X in 5.
9) If the proc-parameter of L is present, let D be the top of [block] .
i) If D is block-not-given, let X be nil.

ii) Otherwise, invoke the method new on the class Proc with an empty list of argu-
ments and D as the block. Let X be the resulting value of the method invocation.

iii) Let n be the proc-parameter-name of proc-parameter.
iv) Create a variable binding with name n and value X in 5.
i) Evaluate the method-body of V.
1) If the evaluation of the method-body is terminated by a return-expression:

i) If the jump-argument of the return-ezpression is present, let O be the value of the
Jump-argument.

ii) Otherwise, let O be nil.
2) Otherwise, let O be the resulting value of the evaluation.

j) Restore the execution context by removing the elements from the tops of [class-module-
list] , [self] , [invoked-method-name] , [default-method-visibility] , [defined-method-name] ,
[block] , and [local-variable-bindings] .

k) The value of the method invocation is O.

The method invocation or the super-expression [see 11.3.4 d)] which corresponds to the set of

items on the tops of all the attributes of the execution context modified in Step g), except

[local-variable-bindings] , is called the current method invocation.

13.3.4 Method lookup

Method lookup is the process by which a binding of an instance method is resolved.

Given a method name M and a class or a module C which is initially searched for the binding
of the method, the method binding is resolved as follows:

120 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If a method binding with name M exists in the set of bindings of instance methods of C,
let B be that binding.

b) Otherwise, let L,, be the included module list of C. Search for a method binding with name

M in the set of bindings of instance methods of each module in L,,. Examine modules in
L,, in reverse order.

1) If a binding is found, let B be that binding.
2) Otherwise:
i) If C does not have a direct superclass, the binding is considered not resolved.

ii) Otherwise, let new C be the direct superclass of C, and continue processing from
Step a).

¢) B is the resolved method binding.

13.3.5 Method visibility

13.3.5.1 General description

Methods are categorized into one of public, private, or protected methods according to the
conditions under which the method invocation is allowed. The attribute of a method which
determines these conditions is called the visibility of the method.

13.3.5.2 Public methods

A public method is a method whose visibility attribute is set to the public visibility.

A public method can be invoked on an object anywhere within a program.

13.3.5.3 Private methods

A private method is a method whose visibility attribute is set to the private visibility.

A private method cannot be invoked with an explicit receiver, i.e., a private method cannot
be invoked if a primary-expression or a chained-method-invocation occurs at the position which

corresponds to the method receiver in the method invocation, except for a method invocation
of any of the following forms where the primary-expression is a self-expression.

e single-method-assignment

e abbreviated-method-assignment
e single-indexing-assignment

e abbreviated-indexing-assignment
13.3.5.4 Protected methods

A protected method is a method whose visibility attribute is set to the protected visibility.

©ISO/IEC 2012 — All rights reserved 121

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

A protected method can be invoked if and only if the following condition holds:
e Let M be an instance of the class Module in which the binding of the method exists.
M is included in the current self, or M is the class of the current self or one of its superclasses.

If M is a singleton class, whether the method can be invoked or not may be determined in a
implementation-defined way.

13.3.5.5 Visibility change

The visibility of methods can be changed with the methods public (see 15.2.2.4.38), private
(see 15.2.2.4.36), and protected (see 15.2.2.4.37), which are defined in the class Module.

13.3.6 The alias statement

Syntax

alias-statement ::
alias new-name aliased-name

new-name ::
defined-method-name
| symbol

aliased-name ::
defined-method-name
| symbol

Semantics

An alias-statement is evaluated as follows:
a) Evaluate the new-name as follows:

1) If the new-name is of the form defined-method-name, let N be the defined-method-name.

2) If the new-name is of the form symbol, evaluate it. Let N be the name of the resulting
instance of the class Symbol.

b) Evaluate the aliased-name as follows:

1) If aliased-name is of the form defined-method-name, let A be the defined-method-name.

2) If aliased-name is of the form symbol, evaluate it. Let A be the name of the resulting
instance of the class Symbol.

c) Let C be the current class or module.

122 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) Search for a method binding with name A, starting from C as described in 13.3.4.
e) If a binding is found and its value is not undef, let V' be the value of the binding.

f) Otherwise, let S be a direct instance of the class Symbol with name A and raise a direct
instance of the class NameError which has S as its name attribute.

g) If a method binding with name N exists in the set of bindings of instance methods of the
current class or module, replace the value of the binding with V.

h) Otherwise, create a method binding with name N and value V in the set of bindings of
instance methods of the current class or module.

i) The value of the alias-statement is nil.
13.3.7 The undef statement

Syntax

undef-statement ::
undef undef-list

undef-list ::
method-name-or-symbol (, method-name-or-symbol)*

method-name-or-symbol ::
defined-method-name
| symbol

Semantics

An undef-statement is evaluated as follows:
a) For each method-name-or-symbol of the undef-list, take the following steps:

1) Let C be the current class or module.

2) If the method-name-or-symbol is of the form defined-method-name, let N be the defined-
method-name. Otherwise, evaluate the symbol. Let N be the name of the resulting
instance of the class Symbol.

3) Search for a method binding with name N, starting from C as described in 13.3.4.

4) If a binding is found and its value is not undef:

i) If the binding is found in C, replace the value of the binding with undef.

ii) Otherwise, create a method binding with name N and value undef in the set of
bindings of instance methods of C.

©ISO/IEC 2012 — All rights reserved 123

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

5) Otherwise, let S be a direct instance of the class Symbol with name N and raise a
direct instance of the class NameError which has S as its name attribute.

b) The value of the undef-statement is nil.

13.4 Singleton classes
13.4.1 General description

A singleton class is an object which is associated with another object. A singleton class modifies
the behavior of an object when associated with it. When a singleton class C' is associated with
an object O, C is called the singleton class of O, and O is called the primary associated object
of the singleton class.

An object has at most one singleton class. When an object is created, it shall not be associated
with any singleton classes unless the object is an instance of the class Class. Singleton classes
are associated with an object by evaluation of a program construct such as a singleton-method-
definition or a singleton-class-definition. However, when an instance of the class Class is created,
it shall already have been associated with its singleton class.

Normally, a singleton class shall be associated with only its primary associated object; however,
the singleton class of an instance of the class Class may be associated with some additional
instances of the class Class which are not the primary associated objects of any other singleton
classes, in an implementation-defined way. Once associated, the primary associated object of
a singleton class shall not be dissociated from its singleton class; however the aforementioned
additional associated instances of the class Class are dissociated from their singleton class when
they become the primary associated object of another singleton class [see 13.4.2 e) and 13.4.3

e)].

Every singleton class is an instance of the class Class (see 15.2.3), and has the same set of
attributes as classes.

The direct superclass of a singleton class is implementation-defined. However, a singleton class
shall be a subclass of the class of the object with which it is associated.

NOTE 1 For example, the singleton class of the class Object is a subclass of the class Class because

the class Object is a direct instance of the class Class. Therefore, the instance methods of the class
Class can be invoked on the class Object.

The singleton class of a class which has a direct superclass shall satisfy the following condition:

e Let E, be the singleton class of a class C, and let S be the direct superclass of C, and let
E; be the singleton class of S. Then, E,. have E; as one of its superclasses.

NOTE 2 This requirement enables classes to inherit singleton methods from its superclasses. For exam-

ple, the singleton class of the class File has the singleton class of the class I0 as its superclass. Thereby,
the class File inherits the singleton method open of the class I0.

Although singleton classes are instances of the class Class, they cannot create an instance of
themselves. When the method new is invoked on a singleton class, a direct instance of the class

TypeError shall be raised [see 15.2.3.3.3 a)].

Whether a singleton class can be a superclass of other classes is unspecified [see 13.2.2 b) 2) i)

124 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

and 15.2.3.3.1 ¢)].
Whether a singleton class can have class variables or not is implementation-defined.
13.4.2 Singleton class definition

Syntax

singleton-class-definition ::
class << expression separator singleton-class-body end

singleton-class-body ::
body-statement

Semantics

A singleton-class-definition is evaluated as follows:

a) Evaluate the expression. Let O be the resulting value. If O is an instance of the class
Integer or the class Symbol, a direct instance of the class TypeError may be raised.

b) 1If O is one of nil, true, or false, let E be the class of O and go to Step f).

c) If O is not associated with a singleton class, create a new singleton class. Let E be the
newly created singleton class, and associate O with F as its primary associated object.

d) If O is associated with a singleton class as its primary associated object, let E be that
singleton class.

e) 1If O is associated with a singleton class not as its primary associated object, dissociate
O from the singleton class, and create a new singleton class. Let E be the newly created

singleton class, and associate O with E as its primary associated object.

f) Modify the execution context as follows:

1) Create a new list which consists of the same elements as the list at the top of [class-
module-list] and add E to the head of the newly created list. Push the list onto
[class-module-list] .

2) Push E onto [self] .

3) Push the public visibility onto [default-method-visibility] .

4) Push an empty set of bindings onto [local-variable-bindings] .

g) Evaluate the singleton-class-body. The value of the singleton-class-definition is the value of
the singleton-class-body.

h) Restore the execution context by removing the elements from the tops of [class-module-list] ,
[self] , [default-method-visibility] , and [local-variable-bindings] .

©ISO/IEC 2012 — All rights reserved 125

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

13.4.3 Singleton method definition

Syntax

singleton-method-definition ::

def singleton-object (. | ::) defined-method-name [no line-terminator here]
method-parameter-part method-body end

singleton-object ::variable-reference

| C expression)

Semantics

A singleton-method-definition is evaluated as follows:

a)

126

Evaluate the singleton-object. Let S be the resulting value. If S is an instance of the class
Numeric or the class Symbol, a direct instance of the class TypeError may be raised.

If S is one of nil, true, or false, let £ be the class of O and go to Step f).

If S is not associated with a singleton class, create a new singleton class. Let E be the
newly created singleton class, and associate S with F as its primary associated object.

If S is associated with a singleton class as its primary associated object, let E be that
singleton class.

If S is associated with a singleton class not as its primary associated object, dissociate S
from the singleton class, and create a new singleton class. Let E be the newly created
singleton class, and associate S with E as its primary associated object.

Let N be the defined-method-name.

Create a method U defined by the singleton-method-definition. U has the method-parameter-

part and the method-body of the singleton-method-definition as described in 13.3.1. Initialize
the attributes of U as follows:

e The class module list attribute is the element at the top of [class-module-list] .
e The defined name attribute is N.
e The visibility attribute is the public visibility.

If a method binding with name N exists in the set of bindings of instance methods of F,
let V be the value of that binding.

1) If V is undef, the evaluation of the singleton-method-definition is implementation-
defined.

2) Replace the value of the binding with U.

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

i) Otherwise, create a method binding with name N and value U in the set of bindings of
instance methods of F.

j) The value of the singleton-method-definition is implementation-defined.

14 Exceptions
14.1 General description

If an instance of the class Exception is raised, the current evaluation process stops, and control
is transferred to a program construct that can handle this exception.

14.2 Cause of exceptions
An exception is raised when:

e the method raise (see 15.3.1.2.12) is invoked.

e an exceptional condition occurs as described in various parts of this International Standard.
Only instances of the class Exception shall be raised.
14.3 Exception handling

Exceptions are handled by a body-statement, an assignment-with-rescue-modifier, or a rescue-
modifier-statement. These program constructs are called exception handlers. When an ex-
ception handler is handling an exception, the exception being handled is called the current
exception.

When an exception is raised, it is handled by an exception handler. This exception handler is
determined as follows:

a) Let S be the innermost local variable scope which lexically encloses the location where
the exception is raised, and which corresponds to one of a program, a method-definition, a
singleton-method-definition, or a block.

b) Test each exception handler in S which lexically encloses the location where the exception
is raised from the innermost to the outermost.

e An assignment-with-rescue-modifier is considered to handle the exception if the excep-
tion is an instance of the class StandardError (see 11.4.2.5), except when the exception
is raised in its operator-erpressions. In this case, assignment-with-rescue-modifier does
not handle the exception.

e A rescue-modifier-statement is considered to handle the exception if the exception is
an instance of the class StandardError (see 12.7), except when the exception is raised
in its fallback-statement-of-rescue-modifier-statement. In this case, rescue-modifier-
statement does not handle the exception.

e A body-statement is considered to handle the exception if one of its rescue-clauses is
considered to handle the exception (see 11.5.2.5), except when the exception is raised

©ISO/IEC 2012 — All rights reserved 127

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

in one of its rescue-clauses, else-clause, or ensure-clause. In this case, body-statement
does not handle the exception. If an ensure-clause of a body-statement is present, it is
evaluated even if the handler does not handle the exception (see 11.5.2.5).

c) If an exception handler which can handle the exception is found in S, terminate the search
for the exception handler. Continue evaluating the program as defined for the relevant
construct [see 11.4.2.5 b), 11.5.2.5 d), and 12.7 b)].

d) If none of the exception handlers in S can handle the exception:
1) If S corresponds to a method-definition or a singleton-method-definition, terminate Step
h) or Step i) of 13.3.3, and take Step j) of the current method invocation (see 13.3.3).
Continue the search from Step a), under the assumption that the exception is raised
at the location where the method is invoked.
2) If S corresponds to a block, terminate the evaluation of the current block, and take
Step f) of 11.3.3. Continue the search from Step a), under the assumption that the

exception is raised at the location where the block is called.

3) If S corresponds to a program, terminate the evaluation of the program, take Step d)
of 10.1, and print the information of the exception in an implementation-defined way.

15 Built-in classes and modules
15.1 General description

Built-in classes and modules are classes and modules which are created before execution of a
program (see 7.2). Figure 1 shows the list of these classes and modules with their class hierarchy
and module inclusion relations.

Built-in classes and modules are respectively specified in 15.2 and 15.3. A built-in class or
module is specified by describing the following attributes (see 13.1.1 and 13.2.1):

e The direct superclass (for built-in classes only).

e The include module list.

e Constants.

e Singleton methods, i.e. instance methods of the singleton class of the built-in class or
module. The class module list of a singleton method of the built-in class or module consists

of two elements: the first is the singleton class of the built-in class or module; the second is
the class Object.

e Instance methods. The class module list (see 13.3.1) of an instance method of the built-in
class or module consists of two elements: the first is the built-in class or module; the second
is the class Object.

The set of bindings of class variables of a built-in class or module is an empty set.

A built-in class or module is not created by a class-definition or module-definition in a program
text, but is created as a class or module whose attributes are described in 15.2 or 15.3 in advance

128 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

prior to an execution of a program. A constant is defined in the class Object for each built-in
class or module, including the class Object itself, where the name of the constant is equivalent
to the name of the class or module and the value of the constant is the actual class or module
itself (see 13.1.2, 13.2.2).

Kernel= Object= Module
A class
- NilClass

L TrueClass
—— FalseClass
——— Numeric

1 é;;flnteger

—— Float

Comparabledg

I — String
— Symbol
—— Array
,,+4§< Hash
. Range
——— Regexp

Enumerabléﬁ‘/ ——— MatchData

AN _____ Proc

——— Struct
o Time
—— I0

ﬁ——fFile

—— Exception

A444StandardError

4447ArgumentError

—— LocalJumpError
—— RangeError
——RuntimeError

—TypeError

—ZeroDivisionError
—— NameError

—— NoMethodError
IndexError
IOError

—— EOFError

< — SystemCallError

direct superclass - ScriptError

SyntaxError

included module —— LoadError

Figure 1 — Built-in classes and modules

A conforming processor may provide the following additional attributes and/or values.

e A specific initial value for an attribute defined in this International Standard whose initial
value is not specified in this International Standard;

©ISO/IEC 2012 — All rights reserved 129

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e Constants, singleton methods, instance methods;

e Additional optional parameters or array parameters for methods specified in this Interna-
tional Standard;

e Additional inclusion of modules into built-in classes/modules.
In 15.2 and 15.3, the following notations are used:

¢ Each subclause of 15.2 and 15.3 (e.g., 15.2.1) specifies a built-in class or module. The title
of the subclause is the name of the built-in class or module. The name is used as the name
of a constant binding in the class Object (see 15.2.1.4).

e A built-in class except the class Object (see 15.2.1) has, as its direct superclass, the class
described in the subclause titled “Direct superclass” in the subclause specifying the built-in
class.

e When a subclause specifying a built-in class or module contains a subclause titled “Included
modules”, the built-in class or module includes (see 13.1.3) the modules listed in that

subclause in the order of that listing.

e FEach subclause in a subclause titled “Singleton methods” with a title of the form C.m
specifies the singleton method m of the class C.

e FEach subclause in a subclause titled “Instance methods” with a title of the form C#m
specifies the instance method m of the class C.

e The parameter specification of a method is described in the form of method-parameter-part
(see 13.3.2).

EXAMPLE 1 The following example defines the parameter specification of a method sample.

sample(argl, arg2, opt=expr, *ary, &blk)

e A singleton method name is prefixed by the name of the class or the module, and a dot (.).

EXAMPLE 2 The following example defines the parameter specification of a singleton method
sample of a class SampleClass:

SampleClass.sample(argl, arg2, opt=expr, *ary, &blk)

e Next to the parameter specification, the visibility and the behavior of the method are
specified.

The visibility, which is any one of public, protected, or private, is specified after the label
named “Visibility:”.

The behavior, which is the steps which shall be taken while evaluating the method-body of
the method [see 13.3.3 1)], is specified after the label named “Behavior:”.

130 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

In these steps, a reference to the name of an argument in the parameter specification is
considered to be the object bound to the local variables of the same name.

e The phrase “call block with X as the argument” indicates that the block corresponding to
the proc parameter block is called as described in 11.3.3 with X as the argument to the
block call.

e The phrase “return X” indicates that the evaluation of the method-body is terminated at
that point, and X is the value of the method-body.

e The phrase “the name designated by N” means the result of the following steps:
a) If N is an instance of the class Symbol, the name of N.
b) If N is an instance of the class String, the content (see 15.2.10.1) of N.
¢) Otherwise, the behavior of the method is unspecified.
15.2 Built-in classes
15.2.1 Object
15.2.1.1 General description
The class Object is an implicit direct superclass for other classes. That is, if the direct superclass
of a class is not specified explicitly in the class definition, the direct superclass of the class is

the class Object (see 13.2.2).

All built-in classes and modules can be referred to through constants of the class Object (see
15.2.1.4).

15.2.1.2 Direct superclass

The class Object does not have a direct superclass, or may have an implementation-defined
superclass.

15.2.1.3 Included modules

The following module is included in the class Object.

e Kernel

15.2.1.4 Constants

The following constants are defined in the class Object.

STDIN: An implementation-defined readable instance of the class I0, which is used for
reading conventional input.

STDOUT: An implementation-defined writable instance of the class I0, which is used for
writing conventional output.

©ISO/IEC 2012 — All rights reserved 131

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

STDERR: An implementation-defined writable instance of the class I0, which is used for
writing diagnostic output.

NOTE In addition to these constants, the name of each built-in class or module is defined as a constant
in the class Object(see 15.1).

15.2.1.5 Instance methods

15.2.1.5.1 Object#initialize

initialize(*args)

Visibility: private
Behavior: The method initialize is the default object initialization method, which is

invoked when an instance is created (see 13.2.4). It returns an implementation-defined
value.

If the class Object is not the root of the class inheritance tree, the method initialize shall be
defined in the class which is the root of the class inheritance tree instead of in the class Object.

15.2.2 Module
15.2.2.1 General description

All modules are instances of the class Module. Therefore, behaviors defined in the class Module
are shared by all modules.

The binary relation on the instances of the class Module denoted A C B is defined as follows:
e B is amodule, and B is included in A (see 13.1.3) or

e Both A and B are instances of the class Class, and B is a superclass of A.

15.2.2.2 Direct superclass

The class Object

15.2.2.3 Singleton methods

15.2.2.3.1 Module.constants

Module.constants

Visibility: public
Behavior:

a) Create an empty direct instance of the class Array. Let A be the instance.

132 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) Let C be the current class or module. Let L be the list which consists of the same
elements as the list at the second element from the top of [class-module-list] , except
the last element, which is the class Object.

Let CS be the set of classes which consists of C' and all the superclasses of C except
the class Object, but when C is the class Object, it shall be included in CS. Let MS
be the set of modules which consists of all the modules in the included module list of
all classes in CS. Let CM be the union of L, CS and MS.

¢) For each class or module ¢ in CM, and for each name N of a constant defined in ¢,
take the following steps:

1) Let S be either a new direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which is chosen as the value
of S is implementation-defined.

2) Unless A contains the element of the same name as S, when S is an instance of the
class Symbol, or the same content as S, when S is an instance of the class String,
insert S to A. The position where S is inserted is implementation-defined.

d) Return A.

15.2.2.3.2 Module.nesting

Module.nesting

Visibility: public
Behavior: The method returns a new direct instance of the class Array which contains all

but the last element of the list at the second element from the top of the [class-module-list]
in the same order.

15.2.2.4 Instance methods

15.2.2.4.1 Module#<=>

<=>(other)

Visibility: public
Behavior: Let A be other. Let R be the receiver of the method.

a) If A is not an instance of the class Module, return nil.

b) 1If A and R are the same object, return an instance of the class Integer whose value
is 0.

c¢) If RC A, return an instance of the class Integer whose value is —1.

©ISO/IEC 2012 — All rights reserved 133

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) If AC R, return an instance of the class Integer whose value is 1.

e) Otherwise, return nil.

15.2.2.4.2 Module#<

<(other)

Visibility: public

Behavior: Let A be other. Let R be the receiver of the method.

a) If Aisnot an instance of the class Module, raise a direct instance of the class TypeError.
b) If A and R are the same object, return false.

c¢) If RC A, return true.

d) If AC R, return false.

e) Otherwise, return nil.

15.2.2.4.3 Module#<=

<=(other)

Visibility: public
Behavior:

a) If other and the receiver are the same object, return true.

b) Otherwise, the behavior is the same as the method < (see 15.2.2.4.2).

15.2.2.4.4 Module#>

> (other)

Visibility: public

Behavior: Let A be other. Let R be the receiver of the method.

a) If Aisnot an instance of the class Module, raise a direct instance of the class TypeError.
b) If A and R are the same object, return false.

c) If RC A, return false.

134 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
d) If AC R, return true.

e) Otherwise, return nil.

15.2.2.4.5 Module#>=

>=(other)

Visibility: public

Behavior:

a) If other and the receiver are the same object, return true.

b) Otherwise, the behavior is the same as the method > (see 15.2.2.4.4).

15.2.2.4.6 Module#==

==(other)

Visibility: public
Behavior: Same as the method == of the module Kernel (see 15.3.1.3.1).

15.2.2.4.7 Module#===

===(object)

Visibility: public

Behavior: Invoke the method kind_of? (see 15.3.1.3.26) of the module Kernel on object
with the receiver as the only argument, and return the resulting value.

15.2.2.4.8 Module#alias_method

alias method(new_name, aliased_name)

Visibility: private
Behavior: Let C be the receiver of the method.

a) Let N be the name designated by new_name. Let A be the name designated by
aliased_name.

b) Take steps d) through h) of 13.3.6, assuming that A, C, and N in 13.3.6 to be 4, C,
and N in the above steps.

¢) Return C.

©ISO/IEC 2012 — All rights reserved 135

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.2.4.9 Module#ancestors

ancestors

Visibility: public

Behavior:

g)

Create an empty direct instance A of the class Array.

Let C be the receiver of the method.

If C is a singleton class, the behavior is implementation-defined.

Otherwise, append C' to the end of A.

Append each element of the included module list of C to A in the reverse order.

If C has a direct superclass, let new C' be the direct superclass of the current C, and
repeat from Step c).

Return A.

15.2.2.4.10 Module#append_features

append_features (module)

Visibility: private

Behavior: Let L; and Lo be the included module list of the receiver and module respec-
tively.

If module and the receiver are the same object, the behavior is unspecified.

If the receiver is an element of Lo, the behavior is implementation-defined.
Otherwise, for each module M in Li, in the same order in L, take the following steps:
1) If M and module are the same object, the behavior is unspecified.

2) If M is not in Lo, append M to the end of Ls.

Append the receiver to Ls.

Return an implementation-defined value.

15.2.2.4.11 Module#attr

136

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

attr(name)

Visibility: private

Behavior: Invoke the method attr_reader of the class Module (see 15.2.2.4.13) on the
receiver with name as the only argument, and return the resulting value.

15.2.2.4.12 Module#attr_accessor

attr_accessor(*name_list)

Visibility: private
Behavior:

Let C be the method receiver.
a) For each element E of name_list, take the following steps:

1) Let N be the name designated by FE.

2) If N is not of the form local-variable-identifier or constant-identifier, raise a direct
instance of the class NameError which has F as its name attribute.

3) Define an instance method in C as if by evaluating the following method definition
at the location of the invocation. In the following method definition, N is N, and
@N is the name which is N prefixed by “@”.

def N
@N
end

4) Define an instance method in C' as if by evaluating the following method definition
at the location of the invocation. In the following method definition, N= is the name
N postfixed by =, and @N is the name which is N prefixed by “@”. The choice of the
parameter name is arbitrary, and val is chosen only for the expository purpose.

def N=(val)
@ON = val
end

b) Return an implementation-defined value.

15.2.2.4.13 Module#tattr_reader

©ISO/IEC 2012 — All rights reserved 137

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

attr_reader (*xname_list)

Visibility: private

Behavior: The method takes the same steps as the method attr_accessor (see 15.2.2.4.12)
of the class Module, except Step a) 4).

15.2.2.4.14 Module#attr_writer

attr_writer (xname_list)

Visibility: private

Behavior: The method takes the same steps as the method attr_accessor (see 15.2.2.4.12)
of the class Module, except Step a) 3).

15.2.2.4.15 Module#class_eval

class_eval (string=nil, &block)

Visibility: public
Behavior:
a) Let M be the receiver.

b) 1If block is given:

1) If string is given, raise a direct instance of the class ArgumentError.
2) Call block with implementation-defined arguments as described in 11.3.3, and let V/

be the resulting value. A conforming processor shall modify the execution context
just before 11.3.3 d) as follows:

e Create a new list which has the same members as those of the list at the top
of [class-module-list] , and add M to the head of the newly created list. Push
the list onto [class-module-list] .

e Push the receiver onto [self] .

e Push the public visibility onto [default-method-visibility] .

In 11.3.3 d) and e), a conforming processor shall ignore M which is added to the
head of the top of [class-module-list] as described above, except when referring to
the current class or module in a method-definition (see 13.3.1), an alias-statement
(see 13.3.6), or an undef-statement (see 13.3.7).

138 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
3) Return V.
c) If block is not given:
1) If string is not an instance of the class String, the behavior is unspecified.
2) Let E be the execution context as it exists just before this method invoked.

3) Modify E as follows:

e Create a new list which has the same members as those of the list at the top
of [class-module-list] , and add M to the head of the newly created list. Push
the list onto [class-module-list] .

e Push the receiver onto [self] .
e Push the public visibility onto [default-method-visibility] .

4) Parse the content of string as a program (see 10.1). If it fails, raise a direct instance
of the class SyntaxError.

5) Evaluate the program within the execution context E. Let V be the resulting value
of the evaluation.

6) Restore the execution context E by removing the elements from the tops of [class-
module-list] , [self], and [default-method-visibility], even when an exception is

raised and not handled in ¢) 4) or c) 5).

7) Return V.

In Step ¢)5), a local variable scope which corresponds to the program is considered as a
local variable scope which corresponds to a block in 9.2 d) 1).

15.2.2.4.16 Module#class_variable_defined?

class_variable_defined?(symbol)

Visibility: public
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) Search for a binding of the class variable with name N by taking steps b) through d)
of 11.5.4.5, assuming that C' and N in 11.5.4.5 to be C' and N in the above steps.

d) If a binding is found, return true.
e) Otherwise, return false.

©ISO/IEC 2012 — All rights reserved 139

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.2.4.17 Module#class_variable_get

class_variable_get (symbol)

Visibility: implementation-defined
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) Search for a binding of the class variable with name N by taking steps b) through d)
of 11.5.4.5, assuming that C' and N in 11.5.4.5 to be C' and N in the above steps.

d) If a binding is found, return the value of the binding.

e) Otherwise, raise a direct instance of the class NameError which has symbol as its name
attribute.

15.2.2.4.18 Module#class_variable_set

class_variable_set (symbol, obj)

Visibility: implementation-defined
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) Search for a binding of the class variable with name N by taking steps b) through d)
of 11.5.4.5, assuming that C' and N in 11.5.4.5 to be C' and N in the above steps.

d) If a binding is found, replace the value of the binding with obj.

e) Otherwise, create a variable binding with name N and value 0bj in the set of bindings
of class variables of C.

f) Return obj.

15.2.2.4.19 Module#class_variables

140 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

class_variables

Visibility: public
Behavior:

a) Let NS be an empty set of names of class variables.

b) Let C be the receiver of the method. Add all the names of the class variables defined
in C to NS.

¢) Let L be the included module list of C. For each module M of L, add all the names of
the class variables defined in M to NS.

d) If C is an instance of the class Class:

1) If C does not have a direct superclass, go to Step e).
2) Let S be the direct superclass of C.
3) Add all the names of the class variables defined in S to NS.

4) Let L be the included module list of S. For each module M of L, add all the names
of the class variables defined in M to NS.

5) Let C be the direct superclass of S. Continue processing from Step d) 1).

e) Return a new direct instance A of the class Array which consists of all the names in
NS. These names are represented by direct instances of either the class String or the
class Symbol. Which of those classes is chosen is implementation-defined. The order
of elements in A is also implementation-defined.

A conforming processor may skip Steps ¢) and d).

15.2.2.4.20 Module#-const_defined?

const_defined? (symbol)

Visibility: public

Behavior:

a) Let C be the receiver of the method.

b) Let N be the name designated by symbol.

¢) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has symbol as its name attribute.

©ISO/IEC 2012 — All rights reserved 141

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) If a binding with name N exists in the set of bindings of constants of C, return true.

e) Search for a binding of a constant with name N from Step d) of 11.5.4.2, assuming that
(' in 11.5.4.2 to be the receiver of the method. However, the search shall be terminated
instead of taking Step e) 1)i) or e) 2)iii). If a binding is found, return true.

f) Return false.
A conforming processor may skip Step e).

15.2.2.4.21 Module#const_get

const_get (symbol)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has symbol as its name attribute.

¢) Search for a binding of a constant with name N in the receiver.
d) If a binding is found, return the value of the binding.

e) Search for a binding of a constant with name N from Step d) of 11.5.4.2, assuming
that C' in 11.5.4.2 to be the receiver of the method.

f) If a binding is found, return the value of the binding.

g) Otherwise, return the value of the invocation of the method const missing [see 11.5.4.2

e) 1) i)].

15.2.2.4.22 Module#const_missing

const_missing(symbol)

Visibility: public

Behavior: The method const missing is invoked when a binding of a constant does not
exist on a constant reference (see 11.5.4.2).

When the method is invoked, take the following steps:
a) Take steps a) through c) of 15.2.2.4.20.
b) Raise a direct instance of the class NameError which has symbol as its name attribute.

142 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.2.4.23 Module#const_set

const_set (symbol, obj)

Visibility: public
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has symbol as its name attribute.

¢) If a binding with name N exists in the set of bindings of constants of C, replace the
value of the binding with o0bj.

d) Otherwise, create a variable binding with N and value obj in the set of bindings of
constants of C.

e) Return obj.

15.2.2.4.24 Module#-constants

constants

Visibility: public
Behavior:

a) Let NS be an empty set of names of constants.

b) Let C be the receiver of the method. Add all the names of the constants defined in C
to NS.

¢) Let L be the included module list of C. For each module M of L, add all the names of
the constants defined in M to NS.

d) If C is an instance of the class Class:

1) If C does not have a direct superclass, or the direct superclass of C' is the class
Object, go to Step e).

2) Let S be the direct superclass of C.
3) Add all the names of the constants defined in S to NS.

4) Let L be the included module list of S. For each module M of L, add all the names
of the constants defined in M to NS.

©ISO/IEC 2012 — All rights reserved 143

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

5) Let C be the direct superclass of S. Continue processing from Step d) 1).

e) Return a new direct instance A of the class Array which consists of all the names in
NS. These names are represented by direct instances of either the class String or the
class Symbol. Which of those classes is chosen is implementation-defined. The order
of elements in A is also implementation-defined.

15.2.2.4.25 Module#extend_object

extend_object (object)

Visibility: private

Behavior: Let S be the singleton class of object. Invoke the method append features (see
15.2.2.4.10) on the receiver with S as the only argument, and return the resulting value.

15.2.2.4.26 Module#extended

extended(object)

Visibility: private
Behavior: The method returns nil.

NOTE The method extended is invoked in the method extend of the module Kernel (see 15.3.1.3.13).
The method extended can be overridden to hook an invocation of the method extend.

15.2.2.4.27 Module#include

include (*module_list)

Visibility: private
Behavior: Let C be the receiver of the method.

a) For each element A of module_list, in the reverse order in module_list, take the following
steps:

1) If A is not an instance of the class Module, raise a direct instance of the class
TypeError.

2) If Ais an instance of the class Class, raise a direct instance of the class TypeError.

3) Invoke the method append features (see 15.2.2.4.10) on A with C as the only
argument.

4) Invoke the method included (see 15.2.2.4.29) on A with C as the only argument.
b) Return C.

144 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.2.4.28 Module#include?

include? (module)

Visibility: public
Behavior: Let C be the receiver of the method.

a) If module is not an instance of the class Module, raise a direct instance of the class
TypeError.

b) If module is an element of the included module list of C, return true.

¢) Otherwise, if C is an instance of the class Class, and if module is an element of the
included module list of one of the superclasses of C, then return true.

d) Otherwise, return false.

15.2.2.4.29 Module#included

included(module)

Visibility: private
Behavior: The method returns nil.

NOTE The method included is invoked in the method include of the class Module (see 15.2.2.4.27).
The method included can be overridden to hook an invocation of the method include.

15.2.2.4.30 Module#included_modules

included_modules

Visibility: public

Behavior: Let C be the receiver of the method.

a) Create an empty direct instance A of the class Array.

b) Append each element of the included module list of C, in the reverse order, to A.

¢) If C is an instance of the class Class, and if C' has a direct superclass, then let new C
be the direct superclass of the current C, and repeat from Step b).

d) Otherwise, return A.

15.2.2.4.31 Module#initialize

©ISO/IEC 2012 — All rights reserved 145

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

initialize(&block)

Visibility: private
Behavior:

a) If block is given, take step b) of the method class_eval of the class Module (see
15.2.2.4.15), assuming that block in 15.2.2.4.15 to be block given to this method.

b) Return an implementation-defined value.

15.2.2.4.32 Module#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) Invoke the instance method initialize _copy defined in the module Kernel on the
receiver with original as the argument.

b) If the receiver is associated with a singleton class, let E, be the singleton class, and
take the following steps:

1) Create a singleton class whose direct superclass is the direct superclass of E,. Let
E,, be the singleton class.

2) For each binding B,; of the constants of E,, create a variable binding with the
same name and value as B, in the set of bindings of constants of E,.

3) For each binding By, of the class variables of F,, create a variable binding with
the same name and value as B2 in the set of bindings of class variables of E,.

4) For each binding B,, of the instance methods of E,, create a method binding with
the same name and value as B,, in the set of bindings of instance methods of E,.

5) Associate the receiver with E,.
c) If the receiver is an instance of the class Class:

1) If original has a direct superclass, set the direct superclass of the receiver to the
direct superclass of original.

2) Otherwise, the behavior is unspecified.

d) Append each element of the included module list of original, in the same order, to the
included module list of the receiver.

146 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) For each binding Bys of the constants of original, create a variable binding with the
same name and value as Bys in the set of bindings of constants of the receiver.

f) For each binding B, of the class variables of original, create a variable binding with
the same name and value as B, in the set of bindings of class variables of the receiver.

g) For each binding By,2 of the instance methods of original, create a method binding
with the same name and value as Bj,2 in the set of bindings of instance methods of the

receliver.

h) Return an implementation-defined value.

15.2.2.4.33 Module#instance_methods

instance methods (include_super=true)

Visibility: public
Behavior: Let C be the receiver of the method.

a) Create an empty direct instance A of the class Array.

b) Let I be the set of bindings of instance methods of C. For each binding B of I, let N
be the name of B, and let V' be the value of B, and take the following steps:

1) If V is undef, or the visibility of V is private, skip the next two steps.
2) Let S be either a new direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which is chosen as the value

of § is implementation-defined.

3) Unless A contains the element of the same name (if S is an instance of the class
Symbol) or the same content (if S is an instance of the class String) as S, append
S to A.

¢) If include_super is a trueish object:

1) For each module M in included module list of C, take step b), assuming that C
in that step to be M.

2) If C does not have a direct superclass, return A.
3) Let new C be the direct superclass of C.

4) Repeat from Step b).
d) Return A.

15.2.2.4.34 Module#method_defined?

©ISO/IEC 2012 — All rights reserved 147

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

method_defined? (symbol)

Visibility: public
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) Search for a binding of an instance method named N starting from C as described in
13.3.4.

¢) If a binding is found and its value is not undef, return true.

d) Otherwise, return false.

15.2.2.4.35 Module#module_eval

module_eval (string=nil, &block)

Visibility: public
Behavior: Same as the method class_eval (see 15.2.2.4.15).

15.2.2.4.36 Module#private

private (*xsymbol_list)

Visibility: private

Behavior: Same as the method public (see 15.2.2.4.38), except to let NV be the private
visibility in 15.2.2.4.38 a).

15.2.2.4.37 Module#protected

protected(*symbol_list)

Visibility: private

Behavior: Same as the method public (see 15.2.2.4.38), except to let NV be the protected
visibility in 15.2.2.4.38 a).

15.2.2.4.38 Module#public

148 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

public (*xsymbol_list)

Visibility: private

Behavior: Let C be the receiver of the method.

a) Let NV be the public visibility.

b) If the length of symbol_list is 0, change the current visibility to NV and return C.

¢) Otherwise, for each element S of symbol_list, take the following steps:

1) Let N be the name designated by S.
2) Search for a method binding with name N starting from C' as described in 13.3.4.
3) If a binding is found and its value is not undef, let V' the value of the binding.

4) Otherwise, raise a direct instance of the class NameError which has S as its name
attribute.

5) If C is the class or module in which the binding is found, change the visibility of
V to NV.

6) Otherwise, define an instance method in C' as if by evaluating the following method

definition. In the definition, N is N. The choice of the parameter name is arbitrary,
and args is chosen only for the expository purpose.

def N(*args)

super
end

The attributes of the method created by the above definition are initialized as
follows:

i) The class module list is the element at the top of [class-module-list] .
ii) The defined name is the defined name of V.
iii) The visibility is NV.

d) Return C.

15.2.2.4.39 Module#remove_class_variable

remove_class_variable (symbol)

©ISO/IEC 2012 — All rights reserved 149

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Visibility: implementation-defined
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) If a binding with name N exists in the set of bindings of class variables of C, let V be
the value of the binding.

1) Remove the binding from the set of bindings of class variables of C.

2) Return V.

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name
attribute.

15.2.2.4.40 Module#remove_const

remove_const (symbol)

Visibility: private
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by symbol.

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has symbol as its name attribute.

¢) If a binding with name N exists in the set of bindings of constants of C, let V be the
value of the binding.

1) Remove the binding from the set of bindings of constants of C.

2) Return V.

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name
attribute.

15.2.2.4.41 Module#remove_method

remove_method (*symbol_list)

Visibility: private
Behavior: Let C be the receiver of the method.

150 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
a) For each element S of symbol_list, in the order in the list, take the following steps:
1) Let N be the name designated by S.

2) If a binding with name N exists in the set of bindings of instance methods of C,
and if the value of the binding is not undef, then remove the binding from the set.

3) Otherwise, raise a direct instance of the class NameError which has S as its name
attribute. In this case, the remaining elements of symbol_list are not processed.

b) Return C.

15.2.2.4.42 Module#undef method

undef method (*symbol_list)

Visibility: private

Behavior: Let C be the receiver of the method.

a) For each element S of symbol_list, in the order in the list, take the following steps:
1) Let N be the name designated by S.

2) Take steps a) 3) and a) 4) of 13.3.7, assuming that C' and N in 13.3.7 to be C' and
N in the above steps, respectively.

b) Return C.

15.2.3 Class
15.2.3.1 General description

All classes are instances of the class Class. Therefore, behaviors defined in the class Class are
shared by all classes.

The instance methods append_features and extend object of the class Class shall be unde-

fined by invoking the method undef method (see 15.2.2.4.42) on the class Class with instances
of the class Symbol whose names are “append_features” and “extend_object” as the arguments.

NOTE The instance methods append_features and extend_object are methods for modules. These
methods are therefore undefined in the class Class, whose instances do not represent modules, but classes.

15.2.3.2 Direct superclass
The class Module
15.2.3.3 Instance methods

15.2.3.3.1 Class#tinitialize

©ISO/IEC 2012 — All rights reserved 151

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

initialize(superclass=0bject, &block)

Visibility: private
Behavior:

a) If the receiver has its direct superclass, or is the root of the class inheritance tree, then
raise a direct instance of the class TypeError.

b) If superclass is not an instance of the class Class, raise a direct instance of the class
TypeError.

c) If superclass is a singleton class or the class Class, the behavior is unspecified.
d) Set the direct superclass of the receiver to superclass.

e) Create a singleton class, and associate it with the receiver. The singleton class shall
have the singleton class of superclass as one of its superclasses.

f) If block is given, take step b) of the method class_eval of the class Module (see
15.2.2.4.15), assuming that block in 15.2.2.4.15 to be block given to this method.

g) Return an implementation-defined value.

15.2.3.3.2 Class#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If the direct superclass of the receiver has already been set, or if the receiver is the root
of the class inheritance tree, then raise a direct instance of the class TypeError.

b) If the receiver is a singleton class, raise a direct instance of the class TypeError.

¢) Invoke the instance method initialize copy defined in the class Module on the re-
ceiver with original as the argument.

d) Return an implementation-defined value.

15.2.3.3.3 Class#new

new (*xargs, &block)

Visibility: public

152 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Behavior:
a) If the receiver is a singleton class, raise a direct instance of the class TypeError.

b) Create a direct instance of the receiver which has no bindings of instance variables.
Let O be the newly created instance.

c¢) Invoke the method initialize on O with all the elements of args as arguments and
block as the block.

d) Return O.

15.2.3.3.4 Class#superclass

superclass

Visibility: public

Behavior: Let C be the receiver of the method.

a) If C is a singleton class, return an implementation-defined value.

b) If C' does not have a direct superclass, return nil.

¢) Otherwise, return the direct superclass of C.
15.2.4 NilClass
15.2.4.1 General description
The class NilClass has only one instance nil (see 6.6).
Instances of the class NilClass shall not be created by the method new of the class NilClass.
Therefore, the singleton method new of the class NilClass shall be undefined, by invoking the
method undef method (see 15.2.2.4.42) on the singleton class of the class NilClass with a direct
instance of the class Symbol whose name is “new” as the argument.
15.2.4.2 Direct superclass
The class Object

15.2.4.3 Instance methods

15.2.4.3.1 NilClass#&

& other)

Visibility: public
Behavior: The method returns false.

©ISO/IEC 2012 — All rights reserved 153

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.4.3.2 NilClass#|

| Cother)

Visibility: public
Behavior:
a) If other is a falseish object, return false.

b) Otherwise, return true.

15.2.4.3.3 NilClass#"

~(other)

Visibility: public
Behavior:

a) If other is a falseish object, return false.

b) Otherwise, return true.

15.2.4.3.4 NilClass#nil?

nil?

Visibility: public
Behavior: The method returns true.

15.2.4.3.5 NilClass#to_s

to_s

Visibility: public

Behavior: The method creates an empty direct instance of the class String, and returns
this instance.

15.2.5 TrueClass
15.2.5.1 General description

The class TrueClass has only one instance true (see 6.6).

154 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Instances of the class TrueClass shall not be created by the method new of the class TrueClass.
Therefore, the singleton method new of the class TrueClass shall be undefined, by invoking the
method undef method (see 15.2.2.4.42) on the singleton class of the class TrueClass with a
direct instance of the class Symbol whose name is “new” as the argument.

15.2.5.2 Direct superclass

The class Object

15.2.5.3 Instance methods

15.2.5.3.1 TrueClass#&

& other)

Visibility: public

Behavior:

a) If other is a falseish object, return false.
b) Otherwise, return true.

15.2.5.3.2 TrueClass#|

| Cother)

Visibility: public
Behavior: The method returns true.

15.2.5.3.3 TrueClass#"~

~(other)

Visibility: public
Behavior:

a) If other is a falseish object, return true.

b) Otherwise, return false.

15.2.5.3.4 TrueClass#to_s

©ISO/IEC 2012 — All rights reserved 155

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

to_s

Visibility: public

Behavior: The method creates a direct instance of the class String, the content of which
is “true”, and returns this instance.

15.2.6 FalseClass

15.2.6.1 General description

The class FalseClass has only one instance false (see 6.6).

Instances of the class FalseClass shall not be created by the method new of the class FalseClass.
Therefore, the singleton method new of the class FalseClass shall be undefined, by invoking
the method undef method (see 15.2.2.4.42) on the singleton class of the class FalseClass with
a direct instance of the class Symbol whose name is “new” as the argument.

15.2.6.2 Direct superclass

The class Object

15.2.6.3 Instance methods

15.2.6.3.1 FalseClass#&

&(other)

Visibility: public
Behavior: The method returns false.

15.2.6.3.2 FalseClass#|

| C other)

Visibility: public
Behavior:

a) If other is a falseish object, return false.

b) Otherwise, return true.

15.2.6.3.3 FalseClass#"

156 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

~(other)

Visibility: public
Behavior:

a) If other is a falseish object, return false.

b) Otherwise, return true.

15.2.6.3.4 FalseClass#to_s

to_s

Visibility: public

Behavior: The method creates a direct instance of the class String, the content of which
is “false”, and returns this instance.

15.2.7 Numeric
15.2.7.1 General description

Instances of the class Numeric represent numbers. The class Numeric is the superclass of all the
other built-in classes which represent numbers.

The notation “the value of the instance N of the class Numeric” means the number represented

by N.

15.2.7.2 Direct superclass

The class Object

15.2.7.3 Included modules

The following module is included in the class Numeric.
e Comparable

15.2.7.4 Instance methods

15.2.7.4.1 Numeric#+@

+@

Visibility: public
Behavior: The method returns the receiver.

©ISO/IEC 2012 — All rights reserved 157

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.7.4.2 Numeric#—-@Q

-0

Visibility: public
Behavior:

a) Invoke the method coerce on the receiver with an instance of the class Integer whose
value is 0 as the only argument. Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method - on F with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.7.4.3 Numeric#abs

abs

Visibility: public
Behavior:

a) Invoke the method < on the receiver with an instance of the class Integer whose value
is 0 as an argument.

b) If this invocation results in a trueish object, invoke the method -@ on the receiver and
return the resulting value.

¢) Otherwise, return the receiver.

15.2.7.4.4 Numeric#coerce

coerce (other)

Visibility: public
Behavior:

a) If the class of the receiver and the class of other are the same class, let X and Y be
other and the receiver, respectively.

158 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) Otherwise, let X and Y be instances of the class Float which are converted from other
and the receiver, respectively. other and the receiver are converted as follows:

1) Let O be other or the receiver.
2) If O is an instance of the class Float, let F' be O.

3) Otherwise:

i) If an invocation of the method respond_to? on O with a direct instance of
the class Symbol whose name is to_f as the argument results in a falseish
object, raise a direct instance of the class TypeError.

ii) Invoke the method to_f on O with no arguments, and let F' be the resulting
value.

iii) If F is not an instance of the class Float, raise a direct instance of the class
TypeError.

4) If the value of F' is NaN, the behavior is unspecified.

5) The converted value of O is F.

¢) Create a direct instance of the class Array which consists of two elements: the first is
X the second is Y.

d) Return the instance of the class Array.

15.2.8 Integer

15.2.8.1 General description

Instances of the class Integer represent integers. The ranges of these integers are unbounded.
However the actual values computable depend on resource limitations, and the behavior when
the resource limits are exceeded is implementation-defined.

Instances of the class Integer shall not be created by the method new of the class Integer.
Therefore, the singleton method new of the class Integer shall be undefined, by invoking the
method undef method (see 15.2.2.4.42) on the singleton class of the class Integer with a direct

instance of the class Symbol whose name is “new” as the argument.

Subclasses of the class Integer may be defined as built-in classes. In this case:

e The class Integer shall not have its direct instances. Instead of a direct instance of the
class Integer, a direct instance of a subclass of the class Integer shall be created.

e Instance methods of the class Integer need not be defined in the class Integer itself if the
instance methods are defined in all subclasses of the class Integer.

e For each subclass of the class Integer, the ranges of the values of its instances may be
bounded.

©ISO/IEC 2012 — All rights reserved 159

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.8.2 Direct superclass
The class Numeric
15.2.8.3 Instance methods

15.2.8.3.1 Integer#<=>

<=>(other)

Visibility: public
Behavior:
a) If other is an instance of the class Integer:

1) If the value of the receiver is larger than the value of other, return an instance of
the class Integer whose value is 1.

2) If the values of the receiver and other are the same integer, return an instance of
the class Integer whose value is 0.

3) If the value of the receiver is smaller than the value of other, return an instance
of the class Integer whose value is —1.

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method <=> on F with S as the only argument.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is unspecified.

iii) Otherwise, return the value of this invocation.
2) Otherwise, return nil.

15.2.8.3.2 Integer#==

==(other)

Visibility: public
Behavior:

a) If other is an instance of the class Integer:

160 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) If the values of the receiver and other are the same integer, return true.

2) Otherwise, return false.

b) Otherwise, invoke the method == on other with the receiver as the argument. Return
the resulting value of this invocation.

15.2.8.3.3 Integer#+

+(other)

Visibility: public
Behavior:

a) If other is an instance of the class Integer, return an instance of the class Integer
whose value is the sum of the values of the receiver and other.

b) If other is an instance of the class Float, let R be the value of the receiver as a
floating-point number.

Return a direct instance of the class Float whose value is the sum of R and the value
of other.

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method + on F' with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.3.4 Integer#—

- (other)

Visibility: public
Behavior:

a) If other is an instance of the class Integer, return an instance of the class Integer
whose value is the result of subtracting the value of other from the value of the receiver.

b) If other is an instance of the class Float, let R be the value of the receiver as a
floating-point number.

©ISO/IEC 2012 — All rights reserved 161

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Return a direct instance of the class Float whose value is the result of subtracting the
value of other from R.

c¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method - on F with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.3.5 Integer#*

*(other)

Visibility: public
Behavior:

a) If other is an instance of the class Integer, return an instance of the class Integer
whose value is the result of multiplication of the values of the receiver and other.

b) If other is an instance of the class Float, let R be the value of the receiver as a
floating-point number.

Return a direct instance of the class Float whose value is the result of multiplication
of R and the value of other.

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method * on F' with S as the only argument.
ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.3.6 Integer#/

/ Cother)

162 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Visibility: public
Behavior:

a) If other is an instance of the class Integer:

1) If the value of other is 0, raise a direct instance of the class ZeroDivisionError.
2) Otherwise, let n be the value of the receiver divided by the value of other. Return

an instance of the class Integer whose value is the largest integer smaller than or
equal to n.

NOTE The behavior is the same even if the receiver has a negative value. For example,
-5 / 2 returns -3.

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method / on F with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.3.7 Integer#%

%Cother)

Visibility: public
Behavior:
a) If other is an instance of the class Integer:

1) If the value of other is 0, raise a direct instance of the class ZeroDivisionError.

2) Otherwise, let and y be the values of the receiver and other.

i) Let ¢ be the largest integer smaller than or equal to z divided by .
ii) Let mbex —t x y.
iii) Return an instance of the class Integer whose value is m.

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

©ISO/IEC 2012 — All rights reserved 163

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method % on F with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.3.8 Integer#"~

Visibility: public
Behavior: The method returns an instance of the class Integer whose two’s complement

representation is the one’s complement of the two’s complement representation of the re-
ceiver.

15.2.8.3.9 Integer#&

&(other)

Visibility: public

Behavior:

a) If other is not an instance of the class Integer, the behavior is unspecified.

b) Otherwise, return an instance of the class Integer whose two’s complement represen-

tation is the bitwise AND of the two’s complement representations of the receiver and
other.

15.2.8.3.10 Integer+#|

| Cother)

Visibility: public
Behavior:

a) If other is not an instance of the class Integer, the behavior is unspecified.

b) Otherwise, return an instance of the class Integer whose two’s complement repre-
sentation is the bitwise inclusive OR of the two’s complement representations of the
receiver and other.

164 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.8.3.11 Integer#"

~(other)

Visibility: public

Behavior:

a) If other is not an instance of the class Integer, the behavior is unspecified.

b) Otherwise, return an instance of the class Integer whose two’s complement repre-

sentation is the bitwise exclusive OR of the two’s complement representations of the
receiver and other.

15.2.8.3.12 Integer#<<

<< (other)

Visibility: public

Behavior:

a) If other is not an instance of the class Integer, the behavior is unspecified.
b) Otherwise, let z and y be the values of the receiver and other.

¢) Return an instance of the class Integer whose value is the largest integer smaller than
or equal to = x 2Y.

15.2.8.3.13 Integer#>>

>>(other)

Visibility: public
Behavior:

a) If other is not an instance of the class Integer, the behavior is unspecified.
b) Otherwise, let z and y be the values of the receiver and other.

¢) Return an instance of the class Integer whose value is the largest integer smaller than
or equal to z x 27Y.

15.2.8.3.14 Integer#ceil

©ISO/IEC 2012 — All rights reserved 165

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ceil

Visibility: public
Behavior: The method returns the receiver.

15.2.8.3.15 Integer#downto

downto (num, &block)

Visibility: public
Behavior:

a) If num is not an instance of the class Integer, or block is not given, the behavior is
unspecified.

b) Let i be the value of the receiver.
c) If 7 is smaller than the value of num, return the receiver.
d) Call block with an instance of the class Integer whose value is .

e) Decrement i by 1 and continue processing from Step c).

15.2.8.3.16 Integer#teql?

eql? (other)

Visibility: public

Behavior:

a) If other is not an instance of the class Integer, return false.

b) Otherwise, invoke the method == on other with the receiver as the argument.

¢) If this invocation results in a trueish object, return true. Otherwise, return false.

15.2.8.3.17 Integer#floor

floor

Visibility: public
Behavior: The method returns the receiver.

166 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.8.3.18 Integer#hash

hash

Visibility: public

Behavior: The method returns an implementation-defined instance of the class Integer,
which satisfies the following condition:

a) Let I; and I be instances of the class Integer.

b) Let H; and Hs be the resulting values of invocations of the method hash on I} and I,
respectively.

¢) The values of H; and Hs shall be the same integer, if the values of [; and I are the
same integer.

15.2.8.3.19 Integer#next

next

Visibility: public

Behavior: The method returns an instance of the class Integer, whose value is the value
of the receiver plus 1.

15.2.8.3.20 Integer#round

round

Visibility: public
Behavior: The method returns the receiver.

15.2.8.3.21 Integer#succ

succ

Visibility: public
Behavior: Same as the method next (see 15.2.8.3.19).

15.2.8.3.22 Integer#times

©ISO/IEC 2012 — All rights reserved 167

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

times (&block)

Visibility: public

Behavior:

2)
b)
)
4)

e)

If block is not given, the behavior is unspecified.

Let ¢ be 0.

If ¢ is larger than or equal to the value of the receiver, return the receiver.

Call block with an instance of the class Integer whose value is ¢ as an argument.

Increment ¢ by 1 and continue processing from Step c).

15.2.8.3.23 Integer#to_f

to_f

Visibility: public

Behavior: The method returns a direct instance of the class Float whose value is the
value of the receiver as a floating-point number.

15.2.8.3.24 Integer#to_i

to_i

Visibility: public

Behavior: The method returns the receiver.

15.2.8.3.25 Integer#to_s

to_s

Visibility: public

Behavior: The method returns a direct instance of the class String whose content satisfy
the following conditions:

168

“on

If the value of the receiver is negative, the first character is the character

The sequence R of the rest of characters represents the magnitude M of the value of
the receiver in base 10. If M is 0, R is a single “0”. Otherwise, the first character of
R is not “0”.

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
EXAMPLE 1 123.to_s returns "123".

EXAMPLE 2 -123.to_s returns "-123".

15.2.8.3.26 Integer#truncate

truncate

Visibility: public
Behavior: The method returns the receiver.

15.2.8.3.27 Integer#upto

upto (num, &block)

Visibility: public
Behavior:

a) If num is not an instance of the class Integer, or block is not given, the behavior is
unspecified.

b) Let i be the value of the receiver.
c) If i is larger than the value of num, return the receiver.
d) Call block with an instance of the class Integer whose value is .

e) Increment ¢ by 1 and continue processing from Step c).

15.2.9 Float

15.2.9.1 General description

Instances of the class Float represent floating-point numbers.

The precision of the value of an instance of the class Float is implementation-defined; however,
if the underlying system of a conforming processor supports IEC 60559, the representation of
an instance of the class Float shall be the 64-bit double format as specified in IEC 60559, 3.2.2.
When an arithmetic operation involving floating-point numbers results in a value which cannot
be represented exactly as an instance of the class Float, the result is rounded to the nearest
representable value. If the two nearest representable values are equally near, which is chosen is
implementation-defined.

If the underlying system of a conforming processor supports IEC 60559:

e If an arithmetic operation involving floating-point numbers results in NaN while invoking
a method of the class Float, the behavior of the method is unspecified.

©ISO/IEC 2012 — All rights reserved 169

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Instances of the class Float shall not be created by the method new of the class Float. There-
fore, the singleton method new of the class Float shall be undefined, by invoking the method
undef method (see 15.2.2.4.42) on the singleton class of the class Float with a direct instance
of the class Symbol whose name is “new” as the argument.

15.2.9.2 Direct superclass

The class Numeric

15.2.9.3 Instance methods

15.2.9.3.1 Float#<=>

<=>(other)

Visibility: public
Behavior:
a) If other is an instance of the class Integer or the class Float:

1) Let a be the value of the receiver. If other is an instance of the class Float, let
b be the value of other. Otherwise, let b be the value of other as a floating-point
number.

2) If a conforming processor supports IEC 60559, and if a or b is NaN, then return
an implementation-defined value.

3) If a > b, return an instance of the class Integer whose value is 1.
4) If a = b, return an instance of the class Integer whose value is 0.

5) If a < b, return an instance of the class Integer whose value is —1.

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method <=> on F with S as the only argument.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is unspecified.

iii) Otherwise, return the value of this invocation.
2) Otherwise, return nil.

15.2.9.3.2 Float#==

170 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

==(other)

Visibility: public
Behavior:
a) If other is an instance of the class Float:

1) If a conforming processor supports IEC 60559, and if the value of the receiver is
NaN, then return false.

2) If the values of the receiver and other are the same number, return true.
3) Otherwise, return false.
b) If other is an instance of the class Integer:

1) If the values of the receiver and other are the mathematically the same, return
true.

2) Otherwise, return false.

¢) Otherwise, invoke the method == on other with the receiver as the argument and return
the resulting value of this invocation.

15.2.9.3.3 Float#+

+(other)

Visibility: public
Behavior:

a) If other is an instance of the class Float, return a direct instance of the class Float
whose value is the sum of the values of the receiver and other.

b) If other is an instance of the class Integer, let R be the value of other as a floating-
point number.

Return a direct instance of the class Float whose value is the sum of R and the value
of the receiver.

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method + on F with S as the only argument.

©ISO/IEC 2012 — All rights reserved 171

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.3.4 Float#—

-(other)

Visibility: public
Behavior:

a) If other is an instance of the class Float, return a direct instance of the class Float
whose value is the result of subtracting the value of other from the value of the receiver.

b) If other is an instance of the class Integer, let R be the value of other as a floating-
point number.

Return a direct instance of the class Float whose value is the result of subtracting R
from the value of the receiver.

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method - on F' with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.3.5 Float#*

* (other)

Visibility: public
Behavior:

a) If other is an instance of the class Float, return a direct instance of the class Float
whose value is the result of multiplication of the values of the receiver and other.

b) If other is an instance of the class Integer, let R be the value of other as a floating-
point number.

Return a direct instance of the class Float whose value is the result of multiplication
of R and the value of the receiver.

172 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method * on F' with S as the only argument.
ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.3.6 Float#/

/ Cother)

Visibility: public
Behavior:

a) If other is an instance of the class Float, return a direct instance of the class Float
whose value is the value of the receiver divided by the value of other.

b) If other is an instance of the class Integer, let R be the value of other as a floating-
point number.

Return a direct instance of the class Float whose value is the value of the receiver
divided by R.

¢) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method / on F with S as the only argument.
ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.3.7 Float#%

%Cother)

Visibility: public

©ISO/IEC 2012 — All rights reserved 173

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior: In the following steps, binary operators 4+, —, and * represent floating-point
arithmetic operations addition, subtraction, and multiplication which are used in the in-
stance methods +, -, and * of the class Float, respectively. The operator * has a higher
precedence than the operators + and —.

a) If other is an instance of the class Integer or the class Float:

Let x be the value of the receiver.

1) If other is an instance of the class Float, let y be the value of other. If other is
an instance of the class Integer, let y be the value of other as a floating-point
number.

i) Let t be the largest integer smaller than or equal to x divided by .
ii) Let mbexz —tx*y.

iii) Return a direct instance of the class Float whose value is m.

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.
Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method % on F with S as the only argument.

ii) Return the resulting value.
2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.3.8 Float#ceil

ceil

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the smallest
integer larger than or equal to the value of the receiver.

15.2.9.3.9 Float#finite?

finite?

Visibility: public
Behavior:

a) If the value of the receiver is a finite number, return true.

174 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) Otherwise, return false.

15.2.9.3.10 Float#floor

floor

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the largest
integer smaller than or equal to the value of the receiver.

15.2.9.3.11 Float#infinite?

infinite?

Visibility: public
Behavior:

a) If the value of the receiver is the positive infinite, return an instance of the class Integer
whose value is 1.

b) If the value of the receiver is the negative infinite, return an instance of the class
Integer whose value is —1.

¢) Otherwise, return nil.

15.2.9.3.12 Float#round

round

Visibility: public
Behavior: The method returns an instance of the class Integer whose value is the nearest

integer to the value of the receiver. If there are two integers equally distant from the value
of the receiver, the one which has the larger absolute value is chosen.

15.2.9.3.13 Float#to_f

to_f

Visibility: public
Behavior: The method returns the receiver.

15.2.9.3.14 Float#to_i

©ISO/IEC 2012 — All rights reserved 175

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

to_i

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the integer
part of the receiver.

15.2.9.3.15 Float#truncate

truncate

Visibility: public

Behavior: Same as the method to_i (see 15.2.9.3.14).
15.2.10 String
15.2.10.1 General description

Instances of the class String represent sequences of characters. The sequence of characters
represented by an instance of the class String is called the content of that instance.

An instance of the class String which does not contain any character is said to be empty. An
instance of the class String shall be empty when it is created by Step b) of the method new of

the class Class.

The notation “an instance of the class Object which represents the character C” means either
of the following:

e An instance of the class Integer whose value is the character code of C.
e An instance of the class String whose content is the single character C.

A conforming processor shall choose one of the above representations and use the same repre-
sentation wherever this notation is used.

Characters of an instance of the class String have their indices counted up from 0. The notation
“the nth character of an instance of the class String” means the character of the instance whose
index is n.

15.2.10.2 Direct superclass

The class Object

15.2.10.3 Included modules

The following modules are included in the class String.

e Comparable

176 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.10.4 Upper-case and lower-case characters

Some methods of the class String handle upper-case and lower-case characters. The correspon-

dence between upper-case and lower-case characters is given in Table 3.

Table 3 — The correspondence between upper-case and lower-case characters

upper-case characters

lower-case characters

N < X =< a3 ®n»dOHTJOZEIERNe—=IDQHO-UAQR >

®o2 < g2 o No Tl o BN} o =l CE N B = VN e B o -

N <

15.2.10.5 Instance methods

15.2.10.5.1 String#<=>

<=>(other)

Visibility: public

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

177

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Behavior:
a) If other is not an instance of the class String, the behavior is unspecified.
b) Let S; and Sy be the contents of the receiver and the other respectively.
c¢) If both S; and Sy are empty, return an instance of the class Integer whose value is 0.
d) Otherwise, if S is empty, return an instance of the class Integer whose value is —1.
e) Otherwise, if Sy is empty, return an instance of the class Integer whose value is 1.
f) Let a, b be the character codes of the first characters of S; and Sy respectively.
1) If a > b, return an instance of the class Integer whose value is 1.
2) If a < b, return an instance of the class Integer whose value is —1.

3) Otherwise, let new S; and Sz be S1 and Sy excluding their first characters, respec-
tively. Continue processing from Step c).

15.2.10.5.2 String#==

==(other)

Visibility: public
Behavior:

a) If other is not an instance of the class String, the behavior is unspecified.
b) If other is an instance of the class String:

1) If the contents of the receiver and other are the same, return true.

2) Otherwise, return false.

15.2.10.5.3 String#="

=" (regexp)

Visibility: public
Behavior:
a) If regexp is not an instance of the class Regexp, the behavior is unspecified.

b) Otherwise, invoke the method =~ on regezp with the receiver as the argument (see
15.2.15.7.7), and return the resulting value.

178 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.10.5.4 String#+

+(other)

Visibility: public

Behavior:

a) If other is not an instance of the class String, the behavior is unspecified.
b) Let S and O be the contents of the receiver and the other respectively.

¢) Return a new direct instance of the class String the content of which is the concate-
nation of S and O.

15.2.10.5.5 String#*

*(num)

Visibility: public

Behavior:

a) If num is not an instance of the class Integer, the behavior is unspecified.
b) Let n be the value of the num.

¢) If n is smaller than 0, raise a direct instance of the class ArgumentError.
d) Otherwise, let C' be the content of the receiver.

e) Create a direct instance S of the class String the content of which is C repeated n
times.

f) Return S.

15.2.10.5.6 String#|]

[1 (*args)

Visibility: public
Behavior:

a) If the length of args is 0 or larger than 2, raise a direct instance of the class ArgumentError.

b) Let P be the first element of args. Let n be the length of the receiver.

©ISO/IEC 2012 — All rights reserved 179

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

c¢) If P is an instance of the class Integer, let b be the value of P.
1) If the length of args is 1:
i) If b is smaller than 0, increment b by n. If b is still smaller than 0, return nil.
ii) If b > n, return nil.

iii) Create an instance of the class Object which represents the bth character of
the receiver and return this instance.

2) If the length of args is 2:

i) If the last element of args is an instance of the class Integer, let [be the
value of the instance. Otherwise, the behavior is unspecified.

ii) If [is smaller than 0, or b is larger than n, return nil.
iii) If b is smaller than 0, increment b by n. If b is still smaller than 0, return nil.
iv) If b + [is larger than n, let [be n — b.

v) If [is smaller than or equal to 0, create an empty direct instance of the class
String and return the instance.

vi) Otherwise, create a direct instance of the class String whose content is the [

characters of the receiver, from the bth index, preserving their order. Return
the instance.

d) If P is an instance of the class Regexp:

1) If the length of args is 1, let i be 0.

2) If the length of args is 2, and the last element of args is an instance of the class
Integer, let i be the value of the instance. Otherwise, the behavior is unspecified.

3) Test if the pattern of P matches the content of the receiver. (see 15.2.15.4 and
15.2.15.5). Let M be the result of the matching process.

4) If M is nil, return nil.
5) If 4 is larger than the length of the match result attribute of M, return nil.

6) If ¢ is smaller than 0, increment 7 by the length of the match result attribute of
M. If 4 is still smaller than or equal to 0, return nil.

7) Let m be the ith element of the match result attribute of M. Create a direct
instance of the class String whose content is the substring of m and return the
instance.

e) If P is an instance of the class String:

180 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) If the length of args is 2, the behavior is unspecified.
2) If the receiver includes the content of P as a substring, create a direct instance
of the class String whose content is equal to the content of P and return the

instance.

3) Otherwise, return nil.
f) Otherwise, the behavior is unspecified.

15.2.10.5.7 String# capitalize

capitalize

Visibility: public

Behavior: The method returns a new direct instance of the class String which contains
all the characters of the receiver, except:

e If the first character of the receiver is a lower-case character, the first character of the
resulting instance is the corresponding upper-case character.

e If the ith character of the receiver (where ¢ > 0) is an upper case character, the ith
character of the resulting instance is the corresponding lower-case character.

15.2.10.5.8 String# capitalize!

capitalize!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
capitalize is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.9 String#chomp

chomp (rs="\n")

Visibility: public
Behavior:

©ISO/IEC 2012 — All rights reserved 181

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If rs is nil, return a new direct instance of the class String whose content is the same
as the receiver.

b) If the receiver is empty, return a new empty direct instance of the class String.
¢) If rs is not an instance of the class String, the behavior is unspecified.

d) Otherwise, return a new direct instance of the class String whose content is the same
as the receiver, except the following characters:

1) If rs consists of only one character 0x0a, the line-terminator on the end, if any, is
excluded.

2) If rs is empty, a sequence of line-terminators on the end, if any, is excluded.

3) Otherwise, if the receiver ends with the content of rs, this sequence of characters
at the end of the receiver is excluded.

15.2.10.5.10 String#chomp!

chomp! (rs="\n")

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
chomp is invoked on the receiver with rs as the argument.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.11 String#-chop

chop

Visibility: public
Behavior:

a) If the receiver is empty, return a new empty direct instance of the class String.

b) Otherwise, create a new direct instance of the class String whose content is the receiver
without the last character and return this instance. If the last character is Ox0a, and
the character just before the 0x0a is 0x0d, the 0x0d is also dropped.

15.2.10.5.12 String#-chop!

182 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

chop!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
chop is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.13 String#downcase

downcase

Visibility: public
Behavior: The method returns a new direct instance of the class String which contains

all the characters of the receiver, with the upper-case characters replaced with the corre-
sponding lower-case characters.

15.2.10.5.14 String#downcase!

downcase!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
downcase is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.15 String#each_line

each_line(&block)

Visibility: public
Behavior: Let s be the content of the receiver. Let ¢ be the first character of s.

a) If block is not given, the behavior is unspecified.

©ISO/IEC 2012 — All rights reserved 183

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
b) Find the first 0x0a in s from c. If there is such a 0x0a:
1) Let d be that 0x0a.

2) Create a direct instance S of the class String whose content is a sequence of
characters from c to d.

3) Call block with S as the argument.

4) If d is the last character of s, return the receiver. Otherwise, let new ¢ be the
character just after d and continue processing from Step b).

c) If there is not such a 0x0a, create a direct instance of the class String whose content is
a sequence of characters from c¢ to the last character of s. Call block with this instance
as the argument.

d) Return the receiver.

15.2.10.5.16 String#empty?

empty?

Visibility: public
Behavior:

a) If the receiver is empty, return true.

b) Otherwise, return false.

15.2.10.5.17 String#eql?

eql?(other)

Visibility: public
Behavior:
a) If other is an instance of the class String:

1) If the contents of the receiver and other are the same, return true.

2) Otherwise, return false.
b) If other is not an instance of the class String, return false.

15.2.10.5.18 String#gsub

184 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

gsub (*args, &block)

Visibility: public

Behavior:

a)

If the length of args is 0 or larger than 2, or the length of args is 1 and block is not
given, raise a direct instance of the class ArgumentError.

Let P be the first element of args. If P is not an instance of the class Regexp, or the
length of args is 2 and the last element of args is not an instance of the class String,
the behavior is unspecified.

Let S be the content of the receiver, and let [be the length of S.

Let L be an empty list and let n be an integer 0.

Test if the pattern of P matches S from the index n (see 15.2.15.4 and 15.2.15.5). Let
M be the result of the matching process.

If M is nil, append to L the substring of S beginning at the nth character up to the
last character of S.

g) Otherwise:

1) If the length of args is 1:

i) Call block with a new direct instance of the class String whose content is the
matched substring of M as the argument.

ii) Let V be the resulting value of this call. If V' is not an instance of the class
String, the behavior is unspecified.

2) Let pre be the pre-match (see 15.2.16.1) of M. Append to L the substring of pre
beginning at the nth character up to the last character of pre, unless n is larger
than the index of the last character of pre.

3) If the length of args is 1, append the content of V' to L. If the length of args is 2,
append to L the content of the last element of args.

4) Let post be the post-match (see 15.2.16.1) of M. Let ¢ be the index of the first
character of post within S.

i) If 7 is equal to n, i.e. if P matched an empty string:
I) Append to L a new direct instance of the class String whose content is
the ith character of S.
II) Increment n by 1.
©ISO/IEC 2012 — All rights reserved 185

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) Otherwise, let new n be i.
5) If n <, continue processing from Step e).

h) Create a direct instance of the class String whose content is the concatenation of all
the elements of L, and return the instance.

15.2.10.5.19 String#gsub!

gsub! (xargs, &block)

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
gsub is invoked on the receiver with the same arguments.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.20 String#hash

hash

Visibility: public

Behavior: The method returns an implementation-defined instance of the class Integer
which satisfies the following condition:

a) Let S; and S be two distinct instances of the class String.

b) Let Hy and Hs be the resulting values of the invocations of the method hash on S} and
S respectively.

c) If S; and Sy have the same content, the values of H; and Hj shall be the same integer.

15.2.10.5.21 String#include?

include?(0bj)

Visibility: public
Behavior:

a) If obj is an instance of the class Integer:

186 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

c)

ISO/IEC 30170:2012(E)

If the receiver includes the character whose character code is the value of 0bj, return
true. Otherwise, return false.

If obj is an instance of the class String:

If there exists a substring of the receiver whose sequence of characters is the same as
the content of 0bj, return true. Otherwise, return false.

Otherwise, the behavior is unspecified.

15.2.10.5.22 String#index

index (substring, offset=0)

Visibility: public

Behavior:

i)

If substring is not an instance of the class String, the behavior is unspecified.

Let R and S be the contents of the receiver and substring, respectively.

If offset is not an instance of the class Integer, the behavior is unspecified.

Let n be the value of offset.

If n is larger than or equal to 0, let O be n.

Otherwise, let O be [+ n, where [is the length of S.

If O is smaller than 0, return nil.

If S appears as a substring of R at one or more positions whose index is larger than
or equal to O, return an instance of the class Integer whose value is the index of the

first such position.

Otherwise, return nil.

15.2.10.5.23 String#initialize

initialize(str="")

Visibility: private

Behavior:

a)

If str is not an instance of the class String, the behavior is unspecified.

b) Otherwise, initialize the content of the receiver to the same sequence of characters as
the content of str.
©ISO/IEC 2012 — All rights reserved 187

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

¢) Return an implementation-defined value.

15.2.10.5.24 String#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:
a) If original is not an instance of the class String, the behavior is unspecified.

b) If original is an instance of the class String, change the content of the receiver to the
content of original.

¢) Return an implementation-defined value.

15.2.10.5.25 String#intern

intern

Visibility: public
Behavior:

a) If the length of the receiver is 0, or if the receiver contains 0x00, then the behavior is
unspecified.

b) Otherwise, return a direct instance of the class Symbol whose name is the content of
the receiver.

15.2.10.5.26 String#length

length

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the number
of characters of the content of the receiver.

15.2.10.5.27 String#match

match(regexp)

Visibility: public

188 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:

a) If regexp is an instance of the class Regexp, let R be regexp.

b) Otherwise, if regerp is an instance of the class String, create a direct instance of
the class Regexp by invoking the method new on the class Regexp with regexp as the
argument. Let R be the instance of the class Regexp.

¢) Otherwise, the behavior is unspecified.

d) Invoke the method match on R with the receiver as the argument.

e) Return the resulting value of the invocation.

15.2.10.5.28 String#replace

replace(other)

Visibility: public
Behavior: Same as the method initialize_copy (see 15.2.10.5.24).

15.2.10.5.29 String#reverse

reverse

Visibility: public

Behavior: The method returns a new direct instance of the class String which contains
all the characters of the content of the receiver in the reverse order.

15.2.10.5.30 String#reverse!

reverse!

Visibility: public
Behavior:

a) Change the content of the receiver to the content of the resulting instance of the class
String when the method reverse is invoked on the receiver.

b) Return the receiver.

15.2.10.5.31 String#rindex

©ISO/IEC 2012 — All rights reserved 189

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

rindex (substring, offset=nil)

Visibility: public
Behavior:
a) If substring is not an instance of the class String, the behavior is unspecified.
b) Let R and S be the contents of the receiver and substring, respectively.
c) If offset is given:
1) If offset is not an instance of the class Integer, the behavior is unspecified.
2) Let n be the value of offset.
3) If n is larger than or equal to 0, let O be n.
4) Otherwise, let O be [4+ n, where [is the length of S.
5) If O is smaller than 0, return nil.
d) Otherwise, let O be 0.
e) If S appears as a substring of R at one or more positions whose index is smaller than
or equal to O, return an instance of the class Integer whose value is the index of the

last such position.

f) Otherwise, return nil.

15.2.10.5.32 String#scan

scan(reg, &block)

Visibility: public

Behavior:

a) If reg is not an instance of the class Regexp, the behavior is unspecified.
b) If block is not given, create an empty direct instance A of the class Array.
c¢) Let S be the content of the receiver, and let [be the length of S.

d) Let n be an integer 0.

e) Test if the pattern of reg matches S from the index n (see 15.2.15.4 and 15.2.15.5). Let
M be the result of the matching process.

190 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

f) If M is not nil:

1) Let L be the match result attribute of M.

2) If the length of L is 1, create a direct instance V of the class String whose content
is the matched substring of M.

3) If the length of L is larger than 1:
i) Create an empty direct instance V of the class Array.
ii) Except for the first element, for each element e of L, in the same order in the
list, append to V a new direct instance of the class String whose content is

the substring of e.

4) If block is given, call block with V as the argument. Otherwise, append V to A.

5) Let post be the post-match of M. Let i be the index of the first character of post
within S.

i) If i and n are the same, i.e. if reg matches the empty string, increment n by
1.

ii) Otherwise, let new n be 4.
6) If n <, continue processing from Step e).
g) 1If block is given, return the receiver. Otherwise, return A.

15.2.10.5.33 String#size

size

Visibility: public
Behavior: Same as the method length (see 15.2.10.5.26).

15.2.10.5.34 String#slice

slice(*args)

Visibility: public
Behavior: Same as the method [] (see 15.2.10.5.6).

15.2.10.5.35 String#split

©ISO/IEC 2012 — All rights reserved 191

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

split(sep)

Visibility: public

Behavior:

a) If sep is not an instance of the class Regexp, the behavior is unspecified.
b) Create an empty direct instance A of the class Array.

c) Let S be the content of the receiver, and let [be the length of S.

d) Let both sp and bp be 0, and let was-empty be false.

e) Test if the pattern of sep matches S from the index sp (see 15.2.15.4 and 15.2.15.5).
Let M be the result of the matching process.

f) If M is nil, append to A a new direct instance of the class String whose content is the
substring of S beginning at the spth character up to the last character of S.

g) Otherwise:
1) If the matched substring of M is an empty string:

i) If was-empty is true, append to A a new direct instance of the class String
whose content is the bpth character of S.

ii) Otherwise, increment sp by 1. If sp < [let new was-empty be true and
continue processing from Step e).

2) Otherwise, let new was-empty be false. Let pre be the pre-match of M. Append
to A a new direct instance of the class String whose content is the substring of
pre beginning at the bpth character up to the last character of pre, unless bp is
larger than the index of the last character of pre.

3) Let L be the match result attribute of M.

4) If the length of L is larger than 1, except for the first element, for each element e
of L, in the same order in the list, take the following steps:

i) Let ¢ be the substring of e.

ii) If ¢ is not nil, append to A a new direct instance of the class String whose
content is c.

5) Let post be the post-match of M, and replace both sp and bp with the index of
the first character of post.

6) If sp > [, continue processing from Step e).

192 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

h) If the last element of A is an instance of the class String whose content is empty,
remove the element. Repeat this step until this condition does not hold.

i) Return A.

15.2.10.5.36 String#sub

sub (*args, &block)

Visibility: public
Behavior:
a) If the length of args is 1 and block is given, or the length of args is 2:

1) If the first element of args is not an instance of the class Regexp, the behavior is
unspecified.

2) Test if the pattern of the first element of args matches the content of the receiver
(see 15.2.15.4 and 15.2.15.5). Let M be the result of the matching process.

3) If M is nil, create a direct instance of the class String whose content is the same
as the receiver and return the instance.

4) Otherwise:

i) If the length of args is 1, call block with a new direct instance of the class
String whose content is the matched substring of M as the argument. Let S
be the resulting value of this call. If S is not an instance of the class String,
the behavior is unspecified.

ii) If the length of args is 2, let S be the last element of args. If S is not an
instance of the class String, the behavior is unspecified.

iii) Create a direct instance of the class String whose content is the concatenation

of pre-match of M, the content of S, and post-match of M, and return the
instance.

b) Otherwise, raise a direct instance of the class ArgumentError.

15.2.10.5.37 String#sub!

sub! (*args, &block)

Visibility: public

Behavior:

©ISO/IEC 2012 — All rights reserved 193

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Let s be the content of the instance of the class String returned when the method sub
is invoked on the receiver with the same arguments.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.5.38 String#to_f

to_f

Visibility: public
Behavior:
a) If the receiver is empty, return a direct instance of the class Float whose value is 0.0.

b) If the receiver starts with a sequence of characters which is a float-literal, return a direct
instance of the class Float whose value is the value of the float-literal (see 8.7.6.2).

c) If the receiver starts with a sequence of characters which is an unprefized-decimal-
integer-literal, return a direct instance of the class Float whose value is the value of

the unprefized-decimal-integer-literal as a floating-point number (see 8.7.6.2).

d) Otherwise, return a direct instance of the class Float whose value is implementation-
defined.

15.2.10.5.39 String#to_i

to_i(base=10)

Visibility: public
Behavior:

a) If base is not an instance of the class Integer whose value is 2, 8, 10, nor 16, the
behavior is unspecified. Otherwise, let b be the value of base.

b) If the receiver is empty, return an instance of the class Integer whose value is 0.

c¢) Let i be 0. Increment ¢ by 1 while the ith character of the receiver is a whitespace
character.

d) If the i¢th character of the receiver is “+” or “—”, increment ¢ by 1.

e) If the ith character of the receiver is “0”, and any of the following conditions holds,
increment ¢ by 2:

Let ¢ be the character of the receiver whose index is 4 plus 1.

194 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
e bis2,and cis “b” or “B”.
e bis Q& and cis “o” or “O”.
e bis 10, and cis “d” or “D”.

[

e bis 16, and c is “x” or “X”.
f) Let s be a sequence of the following characters of the receiver from the ith index:
e If bis 2, binary-digit and “_”.
e If bis 8, octal-digit and “”.
e If bis 10, decimal-digit and “_”.
e If bis 16, hexadecimal-digit and “_”.

g) If the length of s is 0, return an instance of the class Integer whose value is 0.

W

Wi K . e vior i Fod.
h) If s starts with “_”, or s contains successive “_’s, the behavior is unspecified

W

i) Let n be the value of s, ignoring interleaving “_.”s, computed in base b.

If the “—” occurs in Step d), return an instance of the class Integer whose value is
—n. Otherwise, return an instance of the class Integer whose value is n.

15.2.10.5.40 String#to_s

to_s

Visibility: public
Behavior:
a) If the receiver is a direct instance of the class String, return the receiver.

b) Otherwise, create a new direct instance of the class String whose content is the same
as the content of the receiver and return this instance.

15.2.10.5.41 String#to_sym

to_sym

Visibility: public
Behavior: Same as the method intern (see 15.2.10.5.25).

15.2.10.5.42 String#upcase

©ISO/IEC 2012 — All rights reserved 195

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

upcase

Visibility: public
Behavior: The method returns a new direct instance of the class String which contains

all the characters of the receiver, with all the lower-case characters replaced with the cor-
responding upper-case characters.

15.2.10.5.43 String#upcase!

upcase!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
upcase is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.11 Symbol
15.2.11.1 General description

Instances of the class Symbol represent names (see 8.7.6.6). No two instances of the class Symbol
shall represent the same name.

NOTE Therefore, equality of instances of the class Symbol is tested by the method == of the module
Kernel (see 15.3.1.3.1), which is expected to be faster than the method == of the class String (see
15.2.10.5.2).

Instances of the class Symbol shall not be created by the method new of the class Symbol.
Therefore, the singleton method new of the class Symbol shall be undefined, by invoking the
method undef method (see 15.2.2.4.42) on the singleton class of the class Symbol with a direct
instance of the class Symbol whose name is “new” as the argument.

15.2.11.2 Direct superclass

The class Object

15.2.11.3 Instance methods

15.2.11.3.1 Symbol#===

=== other)

196 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Visibility: public
Behavior: Same as the method == of the module Kernel (see 15.3.1.3.1).

15.2.11.3.2 Symbol#id2name

id2name

Visibility: public

Behavior: The method creates a direct instance of the class String, the content of which
represents the name of the receiver, and returns this instance.

15.2.11.3.3 Symbol#to_s

to_s

Visibility: public
Behavior: Same as the method id2name (see 15.2.11.3.2).

15.2.11.3.4 Symbol#to_sym

to_sym

Visibility: public
Behavior: The method returns the receiver.
15.2.12 Array
15.2.12.1 General description
Instances of the class Array represent arrays, which are unbounded. An instance of the class
Array which has no element is said to be empty. The number of elements in an instance of the

class Array is called its length.

Instances of the class Array shall be empty when they are created by Step b) of the method new
of the class Class.

Elements of an instance of the class Array have their indices counted up from 0.

Given an instance A of the class Array, operations append, prepend, and remove are defined
as follows:

append: To append an object O to A is defined as follows:

Insert O after the last element of A.

©ISO/IEC 2012 — All rights reserved 197

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Appending an object to A increases its length by 1.
prepend: To prepend an object O to A is defined as follows:

Insert O to the first index of A. Original elements of A are moved toward the end of A by
one position.

Prepending an object to A increases its length by 1.
remove: To remove an element X from A is defined as follows:
a) Remove X from A.

b) If X is not the last element of A, move the elements after X toward the head of A by
one position.

Removing an object from A decreases its length by 1.
15.2.12.2 Direct superclass
The class Object
15.2.12.3 Included modules
The following module is included in the class Array.
e Enumerable
15.2.12.4 Singleton methods

15.2.12.4.1 Array.|]

Array. [] (*items)

Visibility: public

Behavior: The method returns a newly created instance of the class Array which contains
the elements of items, preserving their order.

15.2.12.5 Instance methods

15.2.12.5.1 Array#+

+(other)

Visibility: public
Behavior:

198 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If other is an instance of the class Array, let A be other. Otherwise, the behavior is
unspecified.

b) Create an empty direct instance R of the class Array.

¢) For each element of the receiver, in the indexing order, append the element to R. Then,
for each element of A, in the indexing order, append the element to R.

d) Return R.

15.2.12.5.2 Array#*

*(num)

Visibility: public

Behavior:

a) If num is not an instance of the class Integer, the behavior is unspecified.

b) If the value of num is smaller than 0, raise a direct instance of the class ArgumentError.
c) If the value of num is 0, return an empty direct instance of the class Array.

d) Otherwise, create an empty direct instance A of the class Array and repeat the following
for num times:

e Append all the elements of the receiver to A, preserving their order.
e) Return A.

15.2.12.5.3 Array#<<

<<(obj)

Visibility: public
Behavior: The method appends obj to the receiver and return the receiver.

15.2.12.5.4 Array#]|]

[1 (*args)

Visibility: public
Behavior:

©ISO/IEC 2012 — All rights reserved 199

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Let n be the length of the receiver.
b) If the length of args is 0, raise a direct instance of the class ArgumentError.
c) If the length of args is 1:

1) If the only argument is an instance of the class Integer, let k£ be the value of the
only argument. Otherwise, the behavior is unspecified.

2) If k < 0, increment k by n. If k is still smaller than 0, return nil.
3) If £ > n, return nil.

4) Otherwise, return the kth element of the receiver.
d) If the length of args is 2:

1) If the elements of args are instances of the class Integer, let b and [be the values
of the first and the last element of args, respectively. Otherwise, the behavior is
unspecified.

2) If b < 0, increment b by n. If b is still smaller than 0, return nil.

3) Ifb>mnorl<0,return nil.

4) If b = n, create an empty direct instance of the class Array and return this instance.

5) Ifl>mn — b, let new [be n — b.

6) Create an empty direct instance A of the class Array. Append the [elements of
the receiver to A, from the bth index, preserving their order. Return A.

e) If the length of args is larger than 2, raise a direct instance of the class ArgumentError.

15.2.12.5.5 Array#[|=

[1=(*args)

Visibility: public

Behavior:

a) Let n be the length of the receiver.

b) If the length of args is smaller than 2, raise a direct instance of the class ArgumentError.
c) If the length of args is 2:

1) If the first element of args is an instance of the class Integer, let k be the value
of the element and let V' be the last element of args. Otherwise, the behavior is
unspecified.

200 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) If k < 0, increment k by n. If k£ is still smaller than 0, raise a direct instance of
the class IndexError.

3) If k < n, replace the kth element of the receiver with V.

4) Otherwise, expand the length of the receiver to k¥ + 1. The last element of the
receiver is V. If k¥ > n, the elements whose index is from n to &k — 1 is nil.

5) Return V.
d) If the length of args is 3, the behavior is unspecified.

e) If the length of args is larger than 3, raise a direct instance of the class ArgumentError.

15.2.12.5.6 Array#clear

clear

Visibility: public
Behavior: The method removes all the elements from the receiver and return the receiver.

15.2.12.5.7 Array#collect!

collect! (&block)

Visibility: public
Behavior:
a) If block is given:

1) For each element of the receiver in the indexing order, call block with the element
as the only argument and replace the element with the resulting value.

2) Return the receiver.
b) If block is not given, the behavior is unspecified.

15.2.12.5.8 Array#concat

concat (other)

Visibility: public

Behavior:

©ISO/IEC 2012 — All rights reserved 201

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If other is not an instance of the class Array, the behavior is unspecified.
b) Otherwise, append all the elements of other to the receiver, preserving their order.

¢) Return the receiver.

15.2.12.5.9 Array#delete_at

delete_at (index)

Visibility: public

Behavior:

a) If the indez is not an instance of the class Integer, the behavior is unspecified.
b) Otherwise, let i be the value of the indez.

c¢) Let n be the length of the receiver.

d) If 7 is smaller than 0, increment ¢ by n. If 7 is still smaller than 0, return nil.

e) If 7 is larger than or equal to n, return nil.

f) Otherwise, remove the ith element of the receiver, and return the removed element.

15.2.12.5.10 Array#each

each(&block)

Visibility: public
Behavior:
a) If block is given:

1) For each element of the receiver in the indexing order, call block with the element
as the only argument.

2) Return the receiver.
b) If block is not given, the behavior is unspecified.

15.2.12.5.11 Array#each_index

202 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

each_index (&block)

Visibility: public
Behavior:
a) If block is given:

1) For each element of the receiver in the indexing order, call block with an argument,
which is an instance of the class Integer whose value is the index of the element.

2) Return the receiver.
b) If block is not given, the behavior is unspecified.

15.2.12.5.12 Array#empty?

empty?

Visibility: public
Behavior:

a) If the receiver is empty, return true.

b) Otherwise, return false.

15.2.12.5.13 Array#first

first(*args)

Visibility: public
Behavior:
a) If the length of args is 0:
1) If the receiver is empty, return nil.
2) Otherwise, return the first element of the receiver.

b) If the length of args is 1:

1) If the only argument is not an instance of the class Integer, the behavior is
unspecified. Otherwise, let n be the value of the only argument.

©ISO/IEC 2012 — All rights reserved 203

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) If n is smaller than 0, raise a direct instance of the class ArgumentError.
3) Otherwise, let N be the smaller of n and the length of the receiver.

4) Return a newly created instance of the class Array which contains the first N
elements of the receiver, preserving their order.

c) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.

15.2.12.5.14 Array#index

index (object=nil)

Visibility: public
Behavior:
a) If object is given:
1) For each element E of the receiver in the indexing order, take the following steps:

i) Invoke the method == on E with object as the argument.

ii) If the resulting value is a trueish object, return an instance of the class
Integer whose value is the index of F.

2) If an instance of the class Integer is not returned in Step a) 1) ii), return nil.
b) Otherwise, the behavior is unspecified.

15.2.12.5.15 Array+#initialize

initialize(size=0, obj=nil, &block)

Visibility: private
Behavior:

a) If size is not an instance of the class Integer, the behavior is unspecified. Otherwise,
let » be the value of size.

b) If n is smaller than 0, raise a direct instance of the class ArgumentError.
c¢) Remove all the elements from the receiver.
d) If nis 0, return an implementation-defined value.

e) If nis larger than 0:

204 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
1) If block is given:
i) Let k be 0.

ii) Call block with an argument, which is an instance of the class Integer whose
value is k. Append the resulting value of this call to the receiver.

iii) Increase k by 1. If k is equal to n, terminate this process. Otherwise, repeat
from Step e) 1) ii).

2) Otherwise, append 0bj to the receiver n times.
3) Return an implementation-defined value.

15.2.12.5.16 Array#initialize_copy

initialize_copy(original)

Visibility: private

Behavior:

a) If original is not an instance of the class Array, the behavior is unspecified.
b) Remove all the elements from the receiver.

c¢) Append all the elements of original to the receiver, preserving their order.

d) Return an implementation-defined value.

15.2.12.5.17 Array+#join

join(sep=nil)

Visibility: public

Behavior:

a) If sep is neither nil nor an instance of the class String, the behavior is unspecified.
b) Create an empty direct instance S of the class String.

¢) For each element X of the receiver, in the indexing order:

1) If sep is not nil, and X is not the first element of the receiver, append the content
of sep to S.

2) If X is an instance of the class String, append the content of X to S.

©ISO/IEC 2012 — All rights reserved 205

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

3) If X is an instance of the class Array:

i) If X is the receiver, i.e. if the receiver contains itself, append an implementation-
defined sequence of characters to S.

ii) Otherwise, append to S the content of the instance of the class String re-
turned by the invocation of the method join on X with sep as the argument.

4) Otherwise, the behavior is unspecified.
d) Return S.

15.2.12.5.18 Array#last

last (*args)

Visibility: public
Behavior:
a) If the length of args is 0:
1) If the receiver is empty, return nil.
2) Otherwise, return the last element of the receiver.
b) If the length of args is 1:

1) If the only argument is not an instance of the class Integer, the behavior is
unspecified. Otherwise, let n be the value of the only argument.

2) If n is smaller than 0, raise a direct instance of the class ArgumentError.
3) Otherwise, let N be the smaller of n and the length of the receiver.

Return a newly created instance of the class Array which contains the last N
elements of the receiver, preserving their order.

c) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.

15.2.12.5.19 Array#length

length

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the number
of elements of the receiver.

206 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.12.5.20 Array#map!

map! (&block)

Visibility: public
Behavior: Same as the method collect! (see 15.2.12.5.7).

15.2.12.5.21 Array#pop

pop

Visibility: public

Behavior:

a) If the receiver is empty, return nil.

b) Otherwise, remove the last element from the receiver and return that element.

15.2.12.5.22 Array#push

push(*xitems)

Visibility: public
Behavior:

a) For each element of items, in the indexing order, append it to the receiver.

b) Return the receiver.

15.2.12.5.23 Array#replace

replace(other)

Visibility: public
Behavior: Same as the method initialize_copy (see 15.2.12.5.16).

15.2.12.5.24 Array#reverse

©ISO/IEC 2012 — All rights reserved 207

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

reverse

Visibility: public

Behavior: The method returns a newly created instance of the class Array which contains
all the elements of the receiver in the reverse order.

15.2.12.5.25 Array#reverse!

reverse!

Visibility: public

Behavior: The method reverses the order of the elements of the receiver and return the
recelver.

15.2.12.5.26 Array#rindex

rindex(object=nil)

Visibility: public
Behavior:
a) If object is given:

1) For each element E of the receiver in the reverse indexing order, take the following
steps:

i) Invoke the method == on E with object as the argument.

ii) If the resulting value is a trueish object, return an instance of the class
Integer whose value is the index of E.

2) If an instance of the class Integer is not returned in Step a) 1) ii), return nil.
b) Otherwise, the behavior is unspecified.

15.2.12.5.27 Array#shift

shift

Visibility: public
Behavior:

208 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
a) If the receiver is empty, return nil.

b) Otherwise, remove the first element from the receiver and return that element.

15.2.12.5.28 Array#tsize

size

Visibility: public
Behavior: Same as the method length (see 15.2.12.5.19).

15.2.12.5.29 Array#slice

slice(*args)

Visibility: public
Behavior: Same as the method [] (see 15.2.12.5.4).

15.2.12.5.30 Array#unshift

unshift (*items)

Visibility: public
Behavior:
a) For each element of items, in the reverse indexing order, prepend it to the receiver.
b) Return the receiver.
15.2.13 Hash
15.2.13.1 General description
Instances of the class Hash represent hashes, which are sets of key/value pairs.
An instance of the class Hash which has no key/value pair is said to be empty. Instances of

the class Hash shall be empty when they are created by Step b) of the method new of the class
Class.

An instance of the class Hash cannot contain more than one key/value pair for each key. In
other words, each key of an instance of the class Hash is unique.

An instance of the class Hash has the following attribute:

©ISO/IEC 2012 — All rights reserved 209

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

default value or proc: Either of the followings:

e A default value, which is returned by the method [] when the specified key is not
found in the instance of the class Hash.

e A default proc, which is an instance of the class Proc and used to generate the return

value of the method [] when the specified key is not found in the instance of the class
Hash.

An instance of the class Hash shall not have both a default value and a default proc simul-
taneously.

Given two keys Kj and Kb, the notation “K; = K>” means that the keys are equivalent, i.e. all
of the following conditions hold:

e An invocation of the method eql? on K; with K> as the only argument evaluates to a
trueish object.

e Let H; and Hs be the results of invocations of the method hash on Kj and Ks, respectively.
H; and Hs are the instances of the class Integer which represents the same integer.
A conforming processor may define a certain range of integers, and when the values of Hy
or H, lies outside of this range, the processor may convert Hy or Hs to another instance of
the class Integer whose value is within the range. Let I} and I be each of the resulting
instances respectively.
The values of I} and I, are the same integer.
If H; or Hj is not an instance of the class Integer, whether K; = K> is unspecified.

NOTE K; = K5 is not equivalent to Ko = Kj.

15.2.13.2 Direct superclass

The class Object

15.2.13.3 Included modules

The following module is included in the class Hash.

[] Enumerable

15.2.13.4 Instance methods

15.2.13.4.1 Hash#==

==(other)

Visibility: public

210 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:
a) If other is not an instance of the class Hash, the behavior is unspecified.
b) If all of the following conditions hold, return true:

e The receiver and other have the same number of key/value pairs.

e For each key/value pair P in the receiver, other has a corresponding key/value
pair @) which satisfies the following conditions:

— The key of P = the key of Q.

— An invocation of the method == on the value of P with the value of () as an
argument results in a trueish object.

¢) Otherwise, return false.

15.2.13.4.2 Hash#]]

(1 Ckey)

Visibility: public
Behavior:
a) If the receiver has a key/value pair P where key = the key of P, return the value of P.

b) Otherwise, invoke the method default on the receiver with key as the argument and
return the resulting value.

15.2.13.4.3 Hash#[|=

[(1=Ckey, value)

Visibility: public
Behavior:

a) If the receiver has a key/value pair P where key = the key of P, replace the value of P
with value.

b) Otherwise:

1) If key is a direct instance of the class String, create a copy of key, i.e. create a
direct instance K of the class String whose content is the same as the key.

2) If key is not an instance of the class String, let K be key.

©ISO/IEC 2012 — All rights reserved 211

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

3) If key is an instance of a subclass of the class String, whether to create a copy or
not is implementation-defined.

4) Store a pair of K and value into the receiver.
¢) Return value.

15.2.13.4.4 Hash#clear

clear

Visibility: public
Behavior:

a) Remove all the key/value pairs from the receiver.

b) Return the receiver.

15.2.13.4.5 Hash#default

default (*args)

Visibility: public
Behavior:
a) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.
b) If the receiver has the default value, return the value.
c) If the receiver has the default proc:
1) If the length of args is 0, return nil.
2) If the length of args is 1, invoke the method call on the default proc of the

receiver with two arguments, the receiver and the only element of args. Return
the resulting value of this invocation.

d) Otherwise, return nil.

15.2.13.4.6 Hash#default=

default=(value)

Visibility: public

212 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:

a) If the receiver has the default proc, remove the default proc.
b) Set the default value of the receiver to value.

¢) Return value.

15.2.13.4.7 Hash#default_proc

default_proc

Visibility: public
Behavior:

a) If the receiver has the default proc, return the default proc.

b) Otherwise, return nil.

15.2.13.4.8 Hash#delete

delete(key, &block)

Visibility: public
Behavior:

a) If the receiver has a key/value pair P where key = the key of P, remove P from the
receiver and return the value of P.

b) Otherwise:

1) If block is given, call block with key as the argument. Return the resulting value
of this call.

2) Otherwise, return nil.

15.2.13.4.9 Hash#each

each(&block)

Visibility: public

Behavior:

©ISO/IEC 2012 — All rights reserved 213

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If block is given, for each key/value pair of the receiver in an implementation-defined
order:

1) Create a direct instance of the class Array which contains two elements, the key
and the value of the pair.

2) Call block with the instance as an argument.
Return the receiver.
b) If block is not given, the behavior is unspecified.

15.2.13.4.10 Hash#each _key

each key (&block)

Visibility: public
Behavior:

a) If block is given, for each key/value pair of the receiver, in an implementation-defined
order, call block with the key of the pair as the argument. Return the receiver.

b) If block is not given, the behavior is unspecified.

15.2.13.4.11 Hash#each_value

each_value(&block)

Visibility: public
Behavior:

a) If block is given, call block for each key/value pair of the receiver, with the value as the
argument, in an implementation-defined order. Return the receiver.

b) If block is not given, the behavior is unspecified.

15.2.13.4.12 Hash#empty?

empty?

Visibility: public

Behavior:

a) If the receiver is empty, return true.
b) Otherwise, return false.

214 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.13.4.13 Hash#has key?

has key?(key)

Visibility: public
Behavior:

a) If the receiver has a key/value pair P where key = the key of P, return true.

b) Otherwise, return false.

15.2.13.4.14 Hash#has_value?

has_value? (value)

Visibility: public
Behavior:

a) If the receiver has a key/value pair whose value holds the following condition, return
true.

e An invocation of the method == on the value with value as the argument result in
a trueish object.

b) Otherwise, return false.

15.2.13.4.15 Hash#include?

include?(key)

Visibility: public
Behavior: Same as the method has_key? (see 15.2.13.4.13).

15.2.13.4.16 Hash#initialize

initialize(*args, &block)

Visibility: private
Behavior:

a) If block is given, and the length of args is not 0, raise a direct instance of the class
ArgumentError.

©ISO/IEC 2012 — All rights reserved 215

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) If block is given and the length of args is 0, create a direct instance of the class Proc
which represents block and set the default proc of the receiver to this instance.

c) If block is not given:
1) If the length of args is 0, let D be nil.
2) If the length of args is 1, let D be the only argument.
3) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.
4) Set the default value of the receiver to D.
d) Return an implementation-defined value.

15.2.13.4.17 Hash#initialize_copy

initialize_copy (original)

Visibility: private

Behavior:

a) If original is not an instance of the class Hash, the behavior is unspecified.

b) Remove all the key/value pairs from the receiver.

c¢) For each key/value pair P of original, in an implementation-defined order, add or
update a key/value pair of the receiver by invoking the method []1= (see 15.2.13.4.3)
on the receiver with the key of P and the value of P as the arguments.

d) Remove the default value or the default proc from the receiver.

e) If orignal has a default value, set the default value of the receiver to that value.

f) If orignal has a default proc, set the default proc of the receiver to that proc.

g) Return an implementation-defined value.

15.2.13.4.18 Hash#key?

key?(key)

Visibility: public
Behavior: Same as the method has_key? (see 15.2.13.4.13).

15.2.13.4.19 Hash#keys

216 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

keys

Visibility: public

Behavior: The method returns a newly created instance of the class Array whose content
is all the keys of the receiver. The order of the keys stored is implementation-defined.

15.2.13.4.20 Hash#length

length

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the number
of key/value pairs stored in the receiver.

15.2.13.4.21 Hash#member?

member? (key)

Visibility: public
Behavior: Same as the method has_key? (see 15.2.13.4.13).

15.2.13.4.22 Hash#merge

merge (other, &block)

Visibility: public
Behavior:
a) If other is not an instance of the class Hash, the behavior is unspecified.

b) Otherwise, create a direct instance H of the class Hash which has the same key/value
pairs as the receiver.

¢) For each key/value pair P of other, in an implementation-defined order:
1) If block is given:

i) If H has the key/value pair) where the key of P = the key of @, call block
with three arguments, the key of P, the value of @), and the value of P. Let
V' be the resulting value. Add or update a key/value pair of the receiver by
invoking the method [1= (see 15.2.13.4.3) on H with the key of P and V as
the arguments.

©ISO/IEC 2012 — All rights reserved 217

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) Otherwise, add or update a key/value pair of the receiver by invoking the
method []= (see 15.2.13.4.3) on H with the key of P and the value of P as
the arguments.

2) If block is not given, add or update a key/value pair of the receiver by invoking
the method [1= (see 15.2.13.4.3) on H with the key of P and the value of P as
the arguments.

d) Return H.

15.2.13.4.23 Hash#replace

replace(other)

Visibility: public
Behavior: Same as the method initialize_copy (see 15.2.13.4.17).

15.2.13.4.24 Hash#shift

shift

Visibility: public
Behavior:
a) If the receiver is empty:

1) If the receiver has the default proc, invoke the method call on the default proc
with two arguments, the receiver and nil. Return the resulting value of this call.

2) If the receiver has the default value, return the value.
3) Otherwise, return nil.

b) Otherwise, choose a key/value pair P and remove P from the receiver. Return a newly
created instance of the class Array which contains two elements, the key and the value
of P.

Which pair is chosen is implementation-defined.

15.2.13.4.25 Hash#size

size

Visibility: public
Behavior: Same as the method length (see 15.2.13.4.20).

218 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.13.4.26 Hash#store

store(key, value)

Visibility: public
Behavior: Same as the method [1= (see 15.2.13.4.3).

15.2.13.4.27 Hash#value?

value? (value)

Visibility: public
Behavior: Same as the method has_value? (see 15.2.13.4.14).

15.2.13.4.28 Hash#values

values

Visibility: public

Behavior: The method returns a newly created instance of the class Array which contains
all the values of the receiver. The order of the values stored is implementation-defined.

15.2.14 Range
15.2.14.1 General description
Instances of the class Range represent ranges between two values, the start and end points.
An instance of the class Range has the following attributes:
start point: The value at the start of the range.
end point: The value at the end of the range.

exclusive flag: If this is true, the end point is excluded from the range. Otherwise, the
end point is included in the range.

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel
is invoked on an instance of the class Range, those attributes shall be copied from the receiver
to the resulting value.

15.2.14.2 Direct superclass

The class Object

©ISO/IEC 2012 — All rights reserved 219

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.14.3 Included modules

The following module is included in the class Range.
e Enumerable

15.2.14.4 Instance methods

15.2.14.4.1 Range#==

==(other)

Visibility: public
Behavior:
a) If all of the following conditions hold, return true:

e other is an instance of the class Range.

e Let S be the start point of other. Invocation of the method == on the start point
of the receiver with S as the argument results in a trueish object.

e Let E be the end point of other. Invocation of the method == on the end point of
the receiver with E as the argument results in a trueish object.

e The exclusive flags of the receiver and other are the same boolean value.
b) Otherwise, return false.

15.2.14.4.2 Range#===

===(0bj)

Visibility: public
Behavior:

a) If neither the start point of the receiver nor the end point of the receiver is an instance
of the class Numeric, the behavior is unspecified.

b) Invoke the method <=> on the start point of the receiver with obj as the argument.
Let S be the result of this invocation.

1) If S is not an instance of the class Integer, the behavior is unspecified.

2) If the value of S is larger than 0, return false.

220 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

¢) Invoke the method <=> on 0bj with the end point of the receiver as the argument. Let
E be the result of this invocation.

e If E is not an instance of the class Integer, the behavior is unspecified.

e If the exclusive flag of the receiver is true, and the value of E is smaller than 0,
return true.

e If the exclusive flag of the receiver is false, and the value of E is smaller than or
equal to 0, return true.

e Otherwise, return false.

15.2.14.4.3 Range#begin

begin

Visibility: public
Behavior: The method returns the start point of the receiver.

15.2.14.4.4 Range#teach

each(&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) If an invocation of the method respond_to? on the start point of the receiver with a
direct instance of the class Symbol whose name is succ as the argument results in a
falseish object, raise a direct instance of the class TypeError.

¢) Let V be the start point of the receiver.

d) Invoke the method <=> on V with the end point of the receiver as the argument. Let
C' be the resulting value.

1) If C is not an instance of the class Integer, the behavior is unspecified.
2) If the value of C' is larger than 0, return the receiver.
3) If the value of C is 0:

i) If the exclusive flag of the receiver is true, return the receiver.

ii) If the exclusive flag of the receiver is false, call block with V as the argument,
then, return the receiver.

©ISO/IEC 2012 — All rights reserved 221

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) Call block with V as the argument.
f) Invoke the method succ on V with no argument, and let new V be the resulting value.

g) Continue processing from Step d).

15.2.14.4.5 Range#end

end

Visibility: public
Behavior: The method returns the end point of the receiver.

15.2.14.4.6 Range+#exclude_end?

exclude_end?

Visibility: public
Behavior: If the exclusive flag of the receiver is true, return true. Otherwise, return false.

15.2.14.4.7 Range#first

first

Visibility: public
Behavior: Same as the method begin (see 15.2.14.4.3).

15.2.14.4.8 Range#include?

include?(0bj)

Visibility: public
Behavior: Same as the method === (see 15.2.14.4.2).

15.2.14.4.9 Range#initialize

initialize(left, right, exclusive=false)

Visibility: private

222 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:

a) Invoke the method <=> on left with right as the argument. If an exception is raised and
not handled during this invocation, raise a direct instance of the class ArgumentError.
If the result of this invocation is not an instance of the class Integer, the behavior is
unspecified.

b) If exclusive is a trueish object, let f be true. Otherwise, let f be false.

c) Set the start point, end point, and exclusive flag of the receiver to left, right, and f,
respectively.

d) Return an implementation-defined value.

15.2.14.4.10 Range#last

last

Visibility: public
Behavior: Same as the method end (see 15.2.14.4.5).

15.2.14.4.11 Range#member?

member? (0bj)

Visibility: public

Behavior: Same as the method === (see 15.2.14.4.2).
15.2.15 Regexp
15.2.15.1 General description

Instances of the class Regexp represent regular expressions, and have the following attributes.

pattern: A pattern of the regular expression (see 15.2.15.4). The default value of this
attribute is empty.

If the value of this attribute is empty when a method is invoked on an instance of the class
Regexp, except for the invocation of the method initialize, the behavior of the invoked
method is unspecified.

ignorecase-flag: A boolean value which indicates whether a match is performed in the
case insensitive manner. The default value of this attribute is false.

W

multiline-flag: A boolean value which indicates whether the pattern matches a line-

terminator (see 15.2.15.4). The default value of this attribute is false.

©ISO/IEC 2012 — All rights reserved 223

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.15.2 Direct superclass
The class Object
15.2.15.3 Constants

The following constants are defined in the class Regexp.

IGNORECASE: An instance of the class Integer whose value is 2", where the integer n
is an implementation-defined value. The value of this constant shall be different from that
of MULTILINE described below.

MULTILINE: An instance of the class Integer whose value is 2™, where the integer m
is an implementation-defined value.

The above constants are used to set the ignorecase-flag and multiline-flag attributes of an in-
stance of the class Regexp (see 15.2.15.7.5).

15.2.15.4 Patterns

Syntax

pattern
alternative
| patterny | alternative

alternative

[empty |
| alternatives term

term
anchor
| atom
| atoms quantifier

anchor ::
left-anchor | right-anchor

left-anchor ::

\A | -

right-anchor ::

\z | $

quantifier ::
* |+ |7

224 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

atom
pattern-character
| grouping

| atom-escape-sequence

pattern-character ::
source-character but not regexp-meta-character

regexp-meta-character ::
Ll b=l Iy #]N]8

| future-reserved-meta-character

future-reserved-meta-character ::

L1432
grouping ::
(pattern)

atom-escape-sequence ::
decimal-escape-sequence
| regexp-character-escape-sequence

decimal-escape-sequence ::
\ decimal-digit-except-zero

regexp-character-escape-sequence ::
regexp-escape-sequence
| regexp-non-escaped-sequence
| hezadecimal-escape-sequence
| regexp-octal-escape-sequence
| regexp-control-escape-sequence

regexrp-escape-sequence
\ regexrp-escaped-character

regexp-escaped-character ::
n|t|r|f|v|ale

regerp-non-escaped-sequence ::
\ regexp-meta-character

regexp-octal-escape-sequence ::
octal-escape-sequence but not decimal-escape-sequence

©ISO/IEC 2012 — All rights reserved 225

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

regexp-control-escape-sequence ::
\ (C- | ¢) regexp-control-escaped-character

regexp-control-escaped-character ::
regexp-character-escape-sequence
| 7

| source-character butnot (\ | 7)

future-reserved-meta-characters are reserved for the extension of the pattern of regular expres-
sions.

Semantics

A regular expression selects specific substrings from a string called a target string according
to the pattern of the regular expression. If the pattern matches more than one substring, the
substring which begins earliest in the target string is selected. If there is more than one such
substring beginning at that point, the substring that has the highest priority, which is described
below, is selected. Each component of the pattern matches a substring of the target string as
follows:

a) A pattern matches the following substring:

1) If the pattern is an alternative;, it matches the string matched with the alternative;.

2) If the pattern is a patterny | alternatives, it matches the string matched with either the
patterny or the alternatives. The one matched with the pattern; has a higher priority.

EXAMPLE 1 "ab".slice(/(alab)/) returns "a", not "ab".
b) An alternative matches the following substring:

1) If the alternative is [empty], it matches an empty string.

2) If the alternative is an alternatives term, the alternative matches the substring whose
first part is matched with the alternatives and whose rest part is matched with the
term.

If there is more than one such substring, the priority of the substrings is determined
as follows:

i) If there is more than one candidate which is matched with the alternatives, a
substring whose first part is a candidate with a higher priority has a higher priority.

EXAMPLE 2 "abc".slice(/(alab)(clb)/) returns "ab", not "abc". In this case,
(alab) is prior to (c|b).

ii) If the first parts of substrings are the same, and if there is more than one candidate
which is matched with the term, a substring whose rest part is a candidate with a
higher priority has a higher priority.

EXAMPLE 3 "abc".slice(/a(blbc)/) returns "ab", not "abc".

226 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
c) A term matches the following substring:
1) If the term is an atomi, it matches the string matched with the atom;.

2) If the term is an atomg quantifier, it matches a string as follows:

i) If the quantifier is *, it matches a sequence of zero or more strings matched with
the atoms.

ii) If the quantifier is +, it matches a sequence of one or more strings matched with
atoma.

iii) If the quantifier is 7, it matches a sequence of zero or one string matched with the
atoms.

A longer sequence has a higher priority.
EXAMPLE 4 "aaa".slice(/a*/) returns "aaa", none of "", "a", and "aa".

3) If the term is an anchor, it matches the empty string at a specific position within the
target string S, as follows:

i) If the anchor is \A, it matches an empty string at the beginning of S.

ii) If the anchor is =, it matches an empty string at the beginning of S or just after
a line-terminator which is followed by at least one character.

iii) If the anchor is \z, it matches an empty string at the end of S.

iv) If the anchor is $, it matches an empty string at the end of S or just before a
line-terminator.

d) An atom matches the following substring:

1) If the atom is a pattern-character, it matches a character C represented by the pattern-
character. If the atom is present in the pattern of an instance of the class Regexp whose
ignorecase-flag attribute is true, it also matches a corresponding upper-case character
of C, if C is a lower-case character, or a corresponding lower-case character of C, if C
is an upper-case character.

2) If the atom is a grouping, it matches the string matched with the grouping.
3) If the atom is “.”, it matches any character except for a line-terminator. If the atom is
present in the pattern of an instance of the class Regexp whose multiline-flag attribute

is true, it also matches a line-terminator.

4) If the atom is an atom-escape-sequence, it matches the string matched with the atom-
escape-sequence.

e) A grouping matches the substring matched with the pattern.

f) An atom-escape-sequence matches the following substring:

©ISO/IEC 2012 — All rights reserved 227

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) If the atom-escape-sequence is a decimal-escape-sequence, it matches the string matched
with the decimal-escape-sequence.

2) If the atom-escape-sequence is a regexp-character-escape-sequence, it matches a string

of length one, the content of which is the character represented by the regexp-character-
escape-sequence.

g) A decimal-escape-sequence matches the following substring:

1) Let i be an integer represented by decimal-digit-except-zero.

2) Let G be the ith grouping in the pattern, counted from 1, in the order of the occurrence
of “(” of groupings from the left of the pattern.

3) If the decimal-escape-sequence is present before G within the pattern, it does not match
any string.

4) If G matches any string, the decimal-escape-sequence matches the same string.

5) Otherwise, the decimal-escape-sequence does not match any string.
h) A regexp-character-escape-sequence represents a character as follows:

e A regexp-escape-sequence represents a character as shown in 8.7.6.3.3, Table 1.
e A regexp-non-escaped-sequence represents a regexp-meta-character.
e A hezadecimal-escape-sequence represents a character as described in 8.7.6.3.3.

e A regexp-octal-escape-sequence is interpreted in the same way as an octal-escape-sequence
(see 8.7.6.3.3).

e A regexp-control-escape-sequence represents a character, the code of which is com-
puted by taking bitwise AND of 0x9f and the code of the character represented by the
regexp-control-escaped-character, except when the regexp-control-escaped-character is
7, in which case, the regexp-control-escape-sequence represents a character whose code
is Ox7f.

15.2.15.5 Matching process

A pattern P is considered to successfully match the given string S, if there exists a substring of
S (including S itself) matched with P.

a) When an index is specified, it is tested if P matches the part of S which begins at the
index and ends at the end of S. However, if the match succeeds, the string attribute of the
resulting instance of the class MatchData is .5, not the part of S which begins at the index,
as described below.

b) A matching process returns either an instance of the class MatchData (see 15.2.16) if the
match succeeds or nil if the match fails.

¢) An instance of the class MatchData is created as follows:

228 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

7)

8)

d) A matching process creates or updates a local variable binding with name

ISO/IEC 30170:2012(E)

Let B be the substring of S which P matched.

Create a direct instance of the class MatchData, and let M be the instance.
Set the string attribute of M (see 15.2.16.1) to S.

Create a new empty list L.

Let O be a pair of the substring B and the index of the first character of B within S.
Append O to L.

For each grouping G in P, in the order of the occurrence of its “(” within P, take the
following steps:

i) If G matches a substring of B under the matching process of P, let Bg be the
substring. Let O be a pair of the substring Bg and the index of the first character
of Bg within S. Append O to L.

ii) Otherwise, append to L a pair whose substring and index of the substring are nil.
Set the match result attribute of M to L.
M is the instance of the class MatchData returned by the matching process.

W~

, which is

specifically used by the method Regexp.last match (see 15.2.15.6.3), as follows:

1)

Let M be the value which the matching process returns.

2) If the binding for the name “7” can be resolved by the process described in 9.2 as if
“7” were a local-variable-identifier, replace the value of the binding with M.

3) Otherwise, create a local variable binding with name “”” and value M in the uppermost
non-block element of [local-variable-bindings] where the non-block element means the
element which does not correspond to a block.

e) A conforming processor may name the binding other than “7”; however, it shall not be of

the form local-variable-identifier.

15.2.15.6 Singleton methods

15.2.15.6.1 Regexp.compile

Regexp.compile(*args)

Visibility: public

Behavior: Same as the method new (see 15.2.3.3.3).

15.2.15.6.2 Regexp.escape

©ISO/IEC 2012 — All rights reserved 229

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Regexp.escape(string)

Visibility: public

Behavior:

a) If string is not an instance of the class String, the behavior is unspecified.

b) Let S be the content of string.

¢) Return a new direct instance of the class String whose content is the same as S,

except that every occurrences of characters on the left of Table 4 are replaced with the
corresponding sequences of characters on the right of Table 4.

Table 4 — Regexp escaped characters

Characters replaced | Escaped sequence
0x0a \n
0x09 \t
0x0d \r
0x0c \f
0x20 \ 0x20

\#
$ \$
(\ (
) \)
* \
+ \+
- \-

\.
? \7?
[\ [
\ \\
] \]
- \"
{ \{
| \
} \}

15.2.15.6.3 Regexp.last_match

Regexp.last match(*indez)

230 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Visibility: public

Behavior:

a)

h)

W~

Search for a binding of a local variable with name as described in 9.2 as if “7” were

a local-variable-identifier.

If the binding is found and its value is an instance of the class MatchData, let M be
the instance. Otherwise, return nil.

If the length of index is 0, return M.

If the length of index is larger than 1, raise a direct instance of the class ArgumentError.
If the length of index is 1, let A be the only argument.

If A is not an instance of the class Integer, the behavior of the method is unspecified.

Let R be the result returned by invoking the method []1 (see 15.2.16.3.1) on M with
A as the only argument.

Return R.

15.2.15.6.4 Regexp.quote

Regexp.quote

Visibility: public

Behavior: Same as the method escape (see 15.2.15.6.2).

15.2.15.7 Instance methods

15.2.15.7.1 Regexp#==

==(other)

Visibility: public

Behavior:

a)

b)

c)

If other is not an instance of the class Regexp, return false.
If the corresponding attributes of the receiver and other are the same, return true.

Otherwise, return false.

15.2.15.7.2 Regexp#===

©ISO/IEC 2012 — All rights reserved 231

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

(string)

Visibility: public

Behavior:

If string is not an instance of the class String, the behavior is unspecified.
Let S be the content of string.

Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be
the result of the matching process.

If M is an instance of the class MatchData, return true.

Otherwise, return false.

15.2.15.7.3 Regexp#="

= (

string)

Visibility: public

Behavior:

f)

15.2.15

If string is not an instance of the class String, the behavior is unspecified.
Let S be the content of string.

Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be
the result of the matching process.

If M is nil return nil.

If M is an instance of the class MatchData, let P be first element of the match result
attribute of M, and let ¢ be the index of the substring of P.

Return an instance of the class Integer whose value is .

.7.4 Regexp#casefold?

casefold?

Visibility: public

Behavior: The method returns the value of the ignorecase-flag attribute of the receiver.

232

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.15.7.5 Regexp#initialize

initialize(source, flag=nil)

Visibility: private
Behavior:

a) If source is an instance of the class Regexp, let S be the pattern attribute of source.
If source is an instance of the class String, let S be the content of source. Otherwise,
the behavior is unspecified.

b) 1If S is not of the form pattern (see 15.2.15.4), raise a direct instance of the class
RegexpError.

c) Set the pattern attribute of the receiver to S.

d) If flag is an instance of the class Integer, let n be the value of the instance.

1) If computing bitwise AND of the value of the constant IGNORECASE of the class
Regexp and n results in non-zero value, set the ignorecase-flag attribute of the
receiver to true.

2) If computing bitwise AND of the value of the constant MULTILINE of the class

Regexp and n results in non-zero value, set the multiline-flag attribute of the
receiver to true.

e) If flag is not an instance of the class Integer, and if flag is a trueish object, then set
the ignorecase-flag attribute of the receiver to true.

f) Return an implementation-defined value.

15.2.15.7.6 Regexp#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If original is not an instance of the class of the receiver, raise a direct instance of the
class TypeError.

b) Set the pattern attribute of the receiver to the pattern attribute of original.

c) Set the ignorecase-flag attribute of the receiver to the ignorecase-flag attribute of orig-
inal.

d) Set the multiline-flag attribute of the receiver to the multiline-flag attribute of original.

©ISO/IEC 2012 — All rights reserved 233

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) Return an implementation-defined value.

15.2.15.7.7 Regexp#match

match(string)

Visibility: public

Behavior:

a) If string is not an instance of the class String, the behavior is unspecified.
b) Let S be the content of string.

c) Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be
the result of the matching process.

d) Return M.

15.2.15.7.8 Regexp+#£source

source

Visibility: public

Behavior: The method returns a direct instance of the class String whose content is the
pattern of the receiver.

15.2.16 MatchData
15.2.16.1 General description

Instances of the class MatchData represent results of successful matches of instances of the class
Regexp against instances of the class String.

An instance of the class MatchData has the attributes called string and match result, which
are initialized as described in 15.2.15.5. The string attribute is the target string S of a matching
process. The match result attribute is a list whose element is a pair of a substring B matched
by the pattern of an instance of the class Regexp or a grouping in the pattern, and the index [
of the first character of B within S. B is called the substring of the element, and I is called the
index of the substring of the element. Elements of the match result attribute are indexed by
integers starting from 0.

Given an instance M of the class MatchData, three values named matched substring, pre-
match and post-match of M, respectively, are defined as follows:

Let S be the string attribute of M. Let F' be the first element of the match result attribute of
M. Let B and O be the substring of F' and the index of the substring of F. Let ¢ be the sum of
O and the length of B.

234 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

matched substring: The matched substring of M is B.

pre-match: The pre-match of M is a part of S, from the first up to, but not including the
Oth character of S.

post-match: The post-match of M is a part of S, from the ith up to the last character of
S.

15.2.16.2 Direct superclass
The class Object
15.2.16.3 Instance methods

15.2.16.3.1 MatchData#][]

[1 (*args)

Visibility: public
Behavior: Invoke the method to_a on the receiver (see 15.2.16.3.12), and invoke the
method [] on the resulting instance of the class Array with args as the arguments (see

15.2.12.5.4), and then, return the resulting value of the invocation of the method [].

15.2.16.3.2 MatchData#begin

begin(index)

Visibility: public

Behavior:

a) If index is not an instance of the class Integer, the behavior is unspecified.

b) Let L be the match result attribute of the receiver, and let i be the value of indez.

c) If ¢ is smaller than 0, or larger than or equal to the number of elements of L, raise a
direct instance of the class IndexError.

d) Otherwise, return the second portion of the ith element of L.

15.2.16.3.3 MatchData#captures

captures

Visibility: public

©ISO/IEC 2012 — All rights reserved 235

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:
a) Let L be the match result attribute of the receiver.
b) Create an empty direct instance A of the class Array.

c¢) Except for the first element, for each element e of L, in the same order in the list,
append to A a direct instance of the class String whose content is the substring of e.

d) Return A.

15.2.16.3.4 MatchData#end

end (index)

Visibility: public

Behavior:

a) If index is not an instance of the class Integer, the behavior is unspecified.

b) Let L be the match result attribute of the receiver, and let i be the value of indez.

c) If i is smaller than 0, or larger than or equal to the number of elements of L, raise a
direct instance of the class IndexError.

d) Let F and S be the substring and the index of the substring of the ith element of L,
respectively.

e) If F is nil, return nil.

f) Otherwise, let f be the length of F. Return an instance of the class Integer whose
value is the sum of S and f.

15.2.16.3.5 MatchData#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If original is not an instance of the class of the receiver, raise a direct instance of the
class TypeError.

b) Set the string attribute of the receiver to the string attribute of original.
¢) Set the match result attribute of the receiver to the match result attribute of original.
d) Return an implementation-defined value.

236 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.16.3.6 MatchData#length

length

Visibility: public
Behavior:
The method returns the number of elements of the match result attribute of the receiver.

15.2.16.3.7 MatchData#toffset

offset (index)

Visibility: public

Behavior:

a) If index is not an instance of the class Integer, the behavior is unspecified.

b) Let L be the match result attribute of the receiver, and let 7 be the value of indez.

c) If 4 is smaller than 0, or larger than or equal to the number of elements of L, raise a
direct instance of the class IndexError.

d) Let S and b be the substring and the index of the substring of the ith element of L,
respectively. Let e be the sum of b and the length of S.

e) Return a new instance of the class Array which contains two instances of the class
Integer, the one whose value is b and the other whose value is e, in this order.

15.2.16.3.8 MatchData#post_match

post_match

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
post-match of the receiver.

15.2.16.3.9 MatchData#pre_match

pre_match

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
pre-match of the receiver.

©ISO/IEC 2012 — All rights reserved 237

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.16.3.10 MatchData#size

size

Visibility: public
Behavior: Same as the method length (see 15.2.16.3.6).

15.2.16.3.11 MatchData#string

string

Visibility: public
Behavior:

The method returns an instance of the class String the content of which is the string
attribute of the receiver.

15.2.16.3.12 MatchData#to_a

to.a

Visibility: public

Behavior:

a) Let L be the match result attribute of the receiver.
b) Create an empty direct instance A of the class Array.

¢) For each element e of L, in the same order in the list, append to A an instance of the
class String whose content is the substring of e.

d) Return A.

15.2.16.3.13 MatchData#to_s

to_s

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
matched substring of the receiver.

238 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.17 Proc

15.2.17.1 General description

Instances of the class Proc represent blocks.

An instance of the class Proc has the following attribute.
block: The block represented by the instance.

15.2.17.2 Direct superclass

The class Object

15.2.17.3 Singleton methods

15.2.17.3.1 Proc.new

Proc.new(&block)

Visibility: public
Behavior:
a) If block is given, let B be block.

b) Otherwise:

1) If the top of [block] is block-not-given, then raise a direct instance of the class
ArgumentError.

2) Otherwise, let B be the top of [block] .
c¢) Create a new direct instance of the class Proc which has B as its block attribute.
d) Return the instance.
15.2.17.4 Instance methods

15.2.17.4.1 Proc#]]

(1 (*xargs)

Visibility: public
Behavior: Same as the method call (see 15.2.17.4.3).

15.2.17.4.2 Proc#tarity

©ISO/IEC 2012 — All rights reserved 239

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

arity

Visibility: public
Behavior: Let B be the block attribute of the receiver.

a) If a block-parameter is omitted in B, return an instance of the class Integer whose
value is implementation-defined.

b) If a block-parameter is present in B:

1) If a block-parameter-list is omitted in the block-parameter, return an instance of
the class Integer whose value is 0.

2) If a block-parameter-list is present in the block-parameter:

i) If the block-parameter-list is of the form left-hand-side, return an instance of
the class Integer whose value is 1.

ii) If the block-parameter-list is of the form multiple-left-hand-side:

I) If the multiple-left-hand-side is of the form grouped-left-hand-side, return
an instance of the class Integer whose value is implementation-defined.

IT) If the multiple-left-hand-side is of the form packing-left-hand-side, return
an instance of the class Integer whose value is —1.

IIT) Otherwise, let n be the number of multiple-left-hand-side-items of the
multiple-left-hand-side.

IV) If the multiple-left-hand-side ends with a packing-left-hand-side, return
an instance of the class Integer whose value is —(n+1).

V) Otherwise, return an instance of the class Integer whose value is n.

15.2.17.4.3 Proc#-call

call(*args)

Visibility: public

Behavior: Let B be the block attribute of the receiver. Let L be an empty list.
a) Append each element of args, in the indexing order, to L.

b) Call B with L as the arguments (see 11.3.3). Let V be the result of the call.
¢) Return V.

240 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.17.4.4 Proc#clone

clone

Visibility: public
Behavior:

a) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

b) For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

c) If the receiver is associated with a singleton class, let E, be the singleton class, and
take the following steps:

1) Create a singleton class whose direct superclass is the direct superclass of E,. Let
E,, be the singleton class.

2) For each binding B,; of the constants of F,, create a variable binding with the
same name and value as B,; in the set of bindings of constants of E,.

3) For each binding By, of the class variables of F,, create a variable binding with
the same name and value as B2 in the set of bindings of class variables of E,.

4) For each binding By, of the instance methods of E,, create a method binding with
the same name and value as B, in the set of bindings of instance methods of FE,.

5) Associate O with E,.

d) Set the block attribute of O to the block attribute of the receiver.

e) Return O.

15.2.17.4.5 Proc#dup

dup

Visibility: public
Behavior:

a) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

b) Set the block attribute of O to the block attribute of the receiver.
¢) Return O.

©ISO/IEC 2012 — All rights reserved 241

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.18 Struct

15.2.18.1 General description

The class Struct is a generator of a structure type which is a class defining a set of fields and
methods for accessing these fields. Fields are indexed by integers starting from 0 [see 15.2.18.3.1
e) and f)]. An instance of a generated class has values for the set of fields. Those values can be
referred to and updated with accessor methods for their fields.

15.2.18.2 Direct superclass

The class Object

15.2.18.3 Singleton methods

15.2.18.3.1 Struct.new

Struct.new(string, *symbol_list)

Visibility: public

Behavior: The method creates a class defining a set of fields and accessor methods for
these fields.

When the method is invoked, take the following steps:

a) Create a direct instance of the class Class which has the class Struct as its direct
superclass. Let C be that class.

b) If string is not an instance of the class String or the class Symbol, the behavior is
unspecified.

c) If string is an instance of the class String, let N be the content of the instance.

1) If N is not of the form constant-identifier, raise a direct instance of the class
ArgumentError.

2) Otherwise,

i) If the binding with name N exists in the set of bindings of constants in the
class Struct, replace the value of the binding with C.

ii) Otherwise, create a constant binding in the class Struct with name N and
value C.

d) If string is an instance of the class Symbol, prepend the instance to symbol_list.
e) Let i be 0.

f) For each element S of symbol_list, take the following steps:

242 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

1) Let N be the name designated by S.
2) Define a field, which is named N and is indexed by 4, in C.

3) If N is of the form local-variable-identifier or constant-identifier:

i) Define a method named N in C which takes no arguments, and when invoked,
returns the value of the field named N.

ii) Define a method named N= (i.e. N postfixed by “=”) in C' which takes one

argument, and when invoked, sets the field named N to the given argument
and returns the argument.

4) Increment i by 1.
g) Return C.

Classes created by the method Struct.new are equipped with public singleton methods
new, [], and members. The following describes those methods, assuming that the name of
a class created by the method Struct.new is C.

C .new(*args)

Visibility: public
Behavior:

a) Create a direct instance of the class with the set of fields the receiver defines. Let I be
the instance.

b) Invoke the method initialize on I with args as the list of arguments.

c¢) Return I

C.[1(*xargs)

Visibility: public

Behavior: Same as the method new described above.

C .members

Visibility: public

Behavior:

©ISO/IEC 2012 — All rights reserved 243

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Create a direct instance A of the class Array. For each field of the receiver, in the
indexing order of the fields, create a direct instance of the class String whose content
is the name of the field and append the instance to A.
b) Return A.
15.2.18.4 Instance methods

15.2.18.4.1 Struct#==

==(other)

Visibility: public

Behavior:

a) If other and the receiver are the same object, return true.

b) If the class of other and that of the receiver are different, return false.

¢) Otherwise, for each field named f of the receiver, take the following steps:

1) Let R and O be the values of the fields named f of the receiver and other respec-
tively.

2) If R and O are not the same object,

i) Invoke the method == on R with O as the only argument. Let V be the
resulting value of the invocation.

ii) If V is a falseish object, return false.
d) Return true.

15.2.18.4.2 Struct#][]

(] (name)

Visibility: public
Behavior:
a) If name is an instance of the class Symbol or the class String:

1) Let N be the name designated by name.

2) If the receiver has the field named N, return the value of the field.

244 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct
instance of the class NameError which has S as its name attribute.

b) If name is an instance of the class Integer, let 7 be the value of name. Let n be the
number of the fields of the receiver.

1) If 7 is negative, let new i be n + 1.

2) If ¢ is still negative or 7 is larger than or equal to n, raise a direct instance of the
class IndexError.

3) Otherwise, return the value of the field whose index is i.
¢) Otherwise, the behavior of the method is unspecified.

15.2.18.4.3 Struct#[]=

[1=Cname, obj)

Visibility: public
Behavior:
a) If name is an instance of the class Symbol or an instance of the class String:
1) Let N be the name designated by name.
2) If the receiver has the field named N,
i) Replace the value of the field with obj,
ii) Return obj.

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct
instance of the class NameError which has S as its name attribute.

b) If name is an instance of the class Integer, let i be the value of name. Let n be the
number of the fields of the receiver.

1) If i is negative, let new ¢ be n + .

2) If ¢ is still negative or i is larger than or equal to n, raise a direct instance of the
class IndexError.

3) Otherwise,
i) Replace the value of the field whose index is ¢ with obj
ii) Return obj.
¢) Otherwise, the behavior of the method is unspecified.

©ISO/IEC 2012 — All rights reserved 245

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.18.4.4 Struct#each

each(&block)

Visibility: public
Behavior:
a) If block is not given, the behavior is unspecified.

b) For each field of the receiver, in the indexing order, call block with the value of the
field as the only argument.

¢) Return the receiver.

15.2.18.4.5 Struct#each_pair

each_pair (&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) For each field of the receiver, in the indexing order, take the following steps:

1) Let N and V be the name and the value of the field respectively. Let S be an
instance of the class Symbol with name N.

2) Call block with the list of arguments which contains S and V in this order.
¢) Return the receiver.

15.2.18.4.6 Struct#initialize

initialize(*args)

Visibility: private

Behavior: Let N, be the length of args, and let N; be the number of the fields of the
receiver.

a) If N, is larger than Ny, raise a direct instance of the class ArgumentError.

b) Otherwise, for each field f of the receiver, let i be the index of f, and set the value of f
to the ith element of args, or to nil when i is equal to or larger than N,.

¢) Return an implementation-defined value.

246 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.18.4.7 Struct+#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If the receiver and original are the same object, return an implementation-defined
value.

b) 1If original is not an instance of the class of the receiver, raise a direct instance of the
class TypeError.

¢) If the number of the fields of the receiver and the number of the fields of original are
different, raise a direct instance of the class TypeError.

d) For each field f of original, let i be the index of f, and set the value of the ith field of
the receiver to the value of f.

e) Return an implementation-defined value.

15.2.18.4.8 Struct#members

members

Visibility: public
Behavior: Same as the method members described in 15.2.18.3.1.

15.2.18.4.9 Struct#select

select (&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) Create an empty direct instance of the class Array. Let A be the instance.

¢) For each field of the receiver, in the indexing order, take the following steps:
1) Let V be the value of the field.

2) Call block with V as the only argument. Let R be the resulting value of the call.

©ISO/IEC 2012 — All rights reserved 247

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
3) If R is a trueish object, append V to A.
d) Return A.
15.2.19 Time
15.2.19.1 General description
Instances of the class Time represent dates and times.

An instance of the class Time holds the following attributes.

Microseconds: Microseconds since January 1, 1970 00:00 UTC. Microseconds is an integer
whose range is implementation-defined. The value of microseconds attributes is rounded
to fit in the representation of microseconds in an implementation-defined way. If an out of
range value is given as microseconds when creating an instance of the class Time, a direct
instance of either of the class ArgumentError or the class RangeError shall be raised.
Which class is chosen is implementation-defined.

Time zone: The time zone.
15.2.19.2 Direct superclass
The class Object
15.2.19.3 Time computation
Mathematical functions introduced in this subclause are used throughout the descriptions in
15.2.19. These functions are assumed to compute exact mathematical results using mathematical

real numbers.

Leap seconds are ignored in this International Standard. However, a conforming processor may
support leap seconds in an implementation-defined way.

15.2.19.3.1 Day

The number of microseconds of a day is computed as follows:

MicroSecPerDay = 24 x 60 x 60 x 10°

The number of days since January 1, 1970 00:00 UTC which corresponds to microseconds ¢ is
computed as follows:

t
Day(t) = fl
ay(t) = floor <MicmSecPerDay>
floor(t) = The integer x such that z <t < x +1

The weekday which corresponds to microseconds ¢ is computed as follows:

248 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

WeekDay(t) = (Day(t) +4) modulo 7

15.2.19.3.2 Year

A year has 365 days, except for leap years, which have 366 days. Leap years are those which
are either:

e divisible by 4 and not divisible by 100, or

e divisible by 400.

The number of days from January 1, 1970 00:00 UTC to the beginning of a year y is computed
as follows:

-1 — 1901 — 1601
DayFromYear(y) = 365x (y—1970)+floor (W) —floor <y10090> +floor <y40060>

Microseconds elapsed since January 1, 1970 00:00 UTC until the beginning of ¥ is computed as
follows:

MicroSecFromYear(y) = DayFromYear(y) x MicroSecPerDay

The year number y which corresponds to microseconds ¢ measured from January 1, 1970 00:00
UTC is computed as follows.

YearFromTime(t) = y such that MicroSecFromYear(y) <t < MicroSecFromYear(y + 1)

The number of days from the beginning of the year for the given microseconds ¢ is computed as
follows.

DayWithinYear(t) = Day(t) — DayFromYear(YearFromTime(t))

15.2.19.3.3 Month

Months have usual number of days. Leap years have the extra day in February. Each month is
identified by the number in the range 1 to 12, in the order from January to December.

The month number which corresponds to microseconds ¢ measured from January 1, 1970 00:00
UTC is computed as follows.

©ISO/IEC 2012 — All rights reserved 249

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

MonthFromTime(t) =

1
Leap Year(t) = {

if 0 < DayWithinYear(t) < 31

if 31 < DayWithinYear(t) < 59 + Leap Year(t)

if 59 + Leap Year(t) < DayWithinYear(t) < 90 4+ Leap Year(t)
if 90 + Leap Year(t) < DayWithinYear(t) < 120 4+ Leap Year(t)

if 120 + Leap Year(t
if 151 + Leap Year(t
if 181 + Leap Year(t
if 212 + Leap Year(t
(
(
(
(

© 00 N & Ot s W NN

if 243 + Leap Year(t
if 273 4+ Leap Year(t
if 304 + Leap Year(t
if 334 + Leap Year(t

—
o

—_
—_
~— ' ' " '

VAN VA VAN VAN VAR VAN VAR

—_
N}
SN

if YearFromTime(t) is a leap year

0 otherwise

15.2.19.3.4 Days of month

< DayWithin Year(t
DayWithin Year(t
DayWithin Year(t
DayWithin Year
DayWithin Year
DayWithin Year(t
ay Within Year(t
ay Within Year(t

t

(
(
(
(
(t
(
(
(

~— ' — ' ' ~—

< 151 + Leap Year(t
< 181 + Leap Year(t
< 212 + Leap Year(t
< 243 + Leap Year
< 273 + Leap Year
< 304 + Leap Year(t
< 334 + Leap Year(t
< 365 + Leap Year(t

)
)
)
)
)
)
)
)

The day of the month which corresponds to microseconds ¢ measured from January 1, 1970
00:00 UTC is computed as follows.

DayWithinMonth(t) =

DayWithinYear(t) + 1 if MonthFromTime(t) =1
DayWithinYear(t) — 30 if MonthFromTime(t) = 2
DayWithinYear(t) — 58 — Leap Year(t) if MonthFromTime(t) = 3
DayWithinYear(t) — 89 — Leap Year(t) if MonthFromTime(t) = 4
DayWithinYear(t) — 119 — Leap Year(t) if MonthFromTime(t) =5
DayWithinYear(t) — 150 — Leap Year(t) if MonthFromTime(t) = 6
DayWithinYear(t) — 180 — Leap Year(t) if MonthFromTime(t) =7
DayWithinYear(t) — 211 — Leap Year(t) if MonthFromTime(t) = 8
DayWithinYear(t) — 242 — Leap Year(t) if MonthFromTime(t) =9
DayWithinYear(t) — 272 — Leap Year(t) if MonthFromTime(t) = 10
DayWithinYear(t) — 303 — Leap Year(t) if MonthFromTime(t) = 11
DayWithinYear(t) — 333 — Leap Year(t) if MonthFromTime(t) = 12

15.2.19.3.5 Hours, Minutes, and Seconds

The numbers of microseconds in an hour, a minute, and a second are as follows:

250

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

MicroSecPerHour = 60 x 60 x 10°
MicroSecPerMinute = 60 x 10°
MicroSecPerSecond = 10°

The hour, the minute, and the second which correspond to microseconds ¢ measured from
January 1, 1970 00:00 UTC are computed as follows.

t
HourFromTime(t) = fl dulo 24
ourFromTime(t) = floor (MicroSecPerHour’) modulo
.) t
MinuteFromTime(t) = floor (VieroSec PerMinute) modulo 60
t
FromT = 1
SecondFromTime(t) = floor (MicroSecPerSecond) modulo 60

15.2.19.4 Time zone and Local time
The current time zone is determined from time zone information provided by the underlying
system. If the system does not provide information on the current local time zone, the time

zone attribute of an instance of the class Time is implementation-defined.

The local time for an instance of the class Time is computed from its microseconds ¢ and time
zone z as follows.

LocalTime = t + ZoneOffset(z)
ZoneOffset(z) = UTC offset of z measured in microseconds
15.2.19.5 Daylight saving time
On a system where it is possible to determine the daylight saving time for each time zone, a
conforming processor should adjust the microseconds attribute of an instance of the class Time if
that microseconds falls within the daylight saving time of the time zone attribute of the instance.
An algorithm used for the adjustment is implementation-defined.

15.2.19.6 Singleton methods

15.2.19.6.1 Time.at

Time.at(*args)

Visibility: public
Behavior:

©ISO/IEC 2012 — All rights reserved 251

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If the length of args is 0 or larger than 2, raise a direct instance of the class ArgumentError.

b) If the length of args is 1, let A be the only argument.

1) If Ais an instance of the class Time, return a new instance of the class Time which
represents the same time and has the same time zone as A.

2) If A is an instance of the class Integer or an instance of the class Float:

i) Let N be the value of A.
ii) Create a direct instance of the class Time which represents the time at N x 10°
microseconds since January 1, 1970 00:00 UTC, with the current local time

zone.

iii) Return the resulting instance.
3) Otherwise, the behavior is unspecified.
c) If the length of args is 2, let S and M be the first and second element of args.

1) 1If S is an instance of the class Integer, let Ng be the value of S.
2) Otherwise, the behavior is unspecified.

3) If M is an instance of the class Integer or an instance of the class Float, let Nys
be the value of M.

4) Otherwise, the behavior is unspecified.

5) Create a direct instance of the class Time which represents the time at Ng x 10 4+
Njr microseconds since January 1, 1970 00:00 UTC, with the current local time
zone.

6) Return the resulting instance.

15.2.19.6.2 Time.gm

Time.gm(year, month=1, day=1, hour=0, min=0, sec=0, usec=0)

Visibility: public
Behavior:

a) Compute an integer value for year, day, hour, min, sec, and usec as described below.
Let Y, D, H, Min, S, and U be integers thus converted.

An integer I is determined from the given object O as follows:

1) If O is an instance of the class Integer, let I be the value of O.

252 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

2) If O is an instance of the class Float, let I be the integral part of the value of O.

3) If O is an instance of the class String:

i) If the content of O is a sequence of decimal-digits, let I be the value of those
sequence of digits computed using base 10.

ii) Otherwise, the behavior is unspecified.
4) Otherwise, the behavior is unspecified.
b) Compute an integer value from month as follows:

1) If month is an instance of the class Integer, let Mon be the value of month.

2) If month is an instance of the class String:

i) If the content of month is the same as one of the names of the months in the
lower row on Table 5, ignoring the differences in case, let Mon be the integer
which corresponds to month in the upper row on the same table.

ii) If the first character of month is decimal-digit, compute an integer value from
month as in Step a). Let Mon be the resulting integer.

iii) Otherwise, raise a direct instance of the class ArgumentError.
3) Otherwise, the behavior is unspecified.
c¢) If Y is an integer such that 0 <Y < 138, the behavior is implementation-defined.

d) If each integer computed above is outside the range as listed below, raise a direct
instance of the class ArgumentError.

e 1< Mon<12
e 1<DLK31
e 0<H<K23
o 0 Min<59
e 0<5<5H9
Whether any conditions are placed on Y is implementation-defined.
e) Let t be a smallest integer which satisfies all of the following equations.
e YearFromTime(t) =Y
e MonthFromTime(t) = Mon

e DayWithinMonth(t) =1

©ISO/IEC 2012 — All rights reserved 253

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

f) Compute microseconds 7' as follows.

T =t+ D x MicroSecPerDay + H x MicroSecPerHour+
Min x MicroSecPerMinute + S x 10° + U

g) Create a direct instance of the class Time which represents the time at T since January
1, 1970 00:00 UTC, with the UTC time zone.

h) Return the resulting instance.

Table 5 — The names of months and corresponding integer

1 2 3 4 9 6 7 8 9 10 | 11 | 12
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

15.2.19.6.3 Time.local

Time.local(year, month=1, day=1, hour=0, min=0, sec=0, usec=0)

Visibility: public

Behavior: Same as the method Time.gm (see 15.2.19.6.2), except that the method returns
a direct instance of the class Time which has the current local time zone as its time zone.

15.2.19.6.4 Time.mktime

Time.mktime (year, month=1, day=1, hour=0, min=0, sec=0, usec=0)

Visibility: public
Behavior: Same as the method Time.local (see 15.2.19.6.3).

15.2.19.6.5 Time.now

Time.now

Visibility: public

Behavior: This method returns a direct instance of the class Time which represents the
current time with the current local time zone.

The behavior of this method is the same as the method new (see 15.2.3.3.3).

15.2.19.6.6 Time.utc

254 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Time.utc(year, month=1, day=1, hour=0, min=0, sec=0, usec=0)

Visibility: public
Behavior: Same as the method Time.gnm (see 15.2.19.6.2).
15.2.19.7 Instance methods

15.2.19.7.1 Time#<=>

<=>(other)

Visibility: public
Behavior:
a) If other is not an instance of the class Time, return nil.

b) Otherwise, let T} and T, be microseconds attributes of the receiver and other, respec-
tively.

1) If T, > T,, return an instance of the class Integer whose value is 1.
2) If T, =T,, return an instance of the class Integer whose value is 0.
3) If T, < T,, return an instance of the class Integer whose value is —1.

15.2.19.7.2 Time#+

+(offset)

Visibility: public
Behavior:

a) If offset is not an instance of the class Integer or the class Float, the behavior is
unspecified.

b) Let V be the value of offset.
c) Let o be the result of computing V' x 10°.
d) Let ¢t and z be the microseconds and time zone attributes of the receiver.

e) Create a direct instance of the class Time which represents the time at (¢ + o) microsec-
onds since January 1, 1970 00:00 UTC, with z as its time zone.

f) Return the resulting instance.

©ISO/IEC 2012 — All rights reserved 255

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.19.7.3 Time#—

-(offset)

Visibility: public
Behavior:

a) If offset is not an instance of the class Integer or the class Float, the behavior is
unspecified.

b) Let V be the value of offset.
c) Let o be the result of computing V' x 106.
d) Let ¢t and z be the microseconds and time zone attributes of the receiver.

e) Create a direct instance of the class Time which represents the time at t—o microseconds
since January 1, 1970 00:00 UTC, with z as its time zone.

f) Return the resulting instance.

15.2.19.7.4 Time#asctime

asctime

Visibility: public
Behavior:
a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.

b) Let W be the name of the day of the week in the second row on Table 6 which
corresponds to WeekDay(t) in the upper row on the same table.

¢) Let Mon be the name of the month in the second row on Table 5 which corresponds
to MonthFromTime(t) in the upper row on the same table.

d) Let D, H, M, S, and Y be as follows:

D = DayWithinMonth(t)
H = HourFromTime(t)
M = MinuteFromTime(t)
S = SecondFromTime(t)
Y = YearFromTime(t)

256 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) Create a direct instance of the class String, the content of which is the following
sequence of characters:

W Mon D H:M:S'Y

D is formatted as two digits with a leading space character (0x20) as necessary. H, M,
and S are formatted as two digits with a leading zero as necessary.

EXAMPLE Time.local(2001, 10, 1, 13, 20, 5).asctimereturns "Mon Oct 1 13:20:05 2001".

f) Return the resulting instance.

Table 6 — The names of the days of the week corresponding to integers

0 1 2 3 4 51 6
Sun | Mon | Tue | Wed | Thu | Fri | Sat

15.2.19.7.5 Time#ctime

ctime

Visibility: public
Behavior: Same as the method asctime (see 15.2.19.7.4).

15.2.19.7.6 Time#day

day

Visibility: public
Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute DayWithinMonth(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.7 Time#dst?

dst?

Visibility: public

©ISO/IEC 2012 — All rights reserved 257

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior: Let T and Z be the microseconds and time zone attributes of the receiver.

a) If T falls within the daylight saving time of Z, return true.

b) Otherwise, return false.

15.2.19.7.8 Time#getgm

getgm

Visibility: public
Behavior: Same as the method getutc (see 15.2.19.7.10).

15.2.19.7.9 Time#getlocal

getlocal

Visibility: public

Behavior: The method returns a new instance of the class Time which has the same
microseconds as the receiver, but has the current local time zone as its time zone.

15.2.19.7.10 Time#getutc

getutc

Visibility: public

Behavior: The method returns a new instance of the class Time which has the same
microseconds as the receiver, but has UTC as its time zone.

15.2.19.7.11 Time#gmt?

gmt?

Visibility: public
Behavior: Same as the method utc? (see 15.2.19.7.28).

15.2.19.7.12 Time#gmt_offset

258 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

gmt_offset

Visibility: public
Behavior: Same as the method utc_offset (see 15.2.19.7.29).

15.2.19.7.13 Time#gmtime

gmtime

Visibility: public
Behavior: Same as the method utc (see 15.2.19.7.27).

15.2.19.7.14 Time#gmtoff

gmtoff

Visibility: public
Behavior: Same as the method utc_offset (see 15.2.19.7.29).

15.2.19.7.15 Time#hour

hour

Visibility: public

Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute HourFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.16 Time#initialize

initialize

Visibility: private
Behavior:

©ISO/IEC 2012 — All rights reserved 259

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Set the microseconds attribute of the receiver to microseconds elapsed since January
1, 1970 00:00 UTC.

b) Set the time zone attribute of the receiver to the current local time zone.
¢) Return an implementation-defined value.

15.2.19.7.17 Time#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If original is not an instance of the class Time, raise a direct instance of the class
TypeError.

b) Set the microseconds attribute of the receiver to the microseconds attribute of original.
c) Set the time zone attribute of the receiver to the time zone attribute of original.
d) Return an implementation-defined value.

15.2.19.7.18 Time#localtime

localtime

Visibility: public
Behavior:

a) Change the time zone attribute of the receiver to the current local time zone.

b) Return the receiver.

15.2.19.7.19 Time#mday

mday

Visibility: public
Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute DayWithinMonth(t).
c¢) Return an instance of the class Integer whose value is the result of Step b).

260 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.19.7.20 Time#min

min

Visibility: public

Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute MinuteFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.21 Time#mon

mon

Visibility: public

Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute MonthFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.22 Time#month

month

Visibility: public
Behavior: Same as the method mon (see 15.2.19.7.21).

15.2.19.7.23 Time#sec

secC

Visibility: public
Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.

b) Compute SecondFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

©ISO/IEC 2012 — All rights reserved 261

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.19.7.24 Time#to_f

to_f

Visibility: public

Behavior: Let ¢t the microseconds attribute of the receiver.

a) Compute ¢/10°.

b) Return a direct instance of the class Float whose value is the result of Step a).

15.2.19.7.25 Time#to_i

to_i

Visibility: public

Behavior: Let t the microseconds attribute of the receiver.

a) Compute floor(t/10%).

b) Return an instance of the class Integer whose value is the result of Step a).

15.2.19.7.26 Time#tusec

usec

Visibility: public

Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute ¢t modulo 10°.

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.27 Time#utc

utc

Visibility: public
Behavior:

a) Change the time zone attribute of the receiver to UTC.

b) Return the receiver.

262 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.19.7.28 Time#tutc?

utc?

Visibility: public
Behavior: Let Z be the time zone attribute of the receiver.

a) If 7 is UTC, return true.

b) Otherwise, return false.

15.2.19.7.29 Time#utc_offset

utc_offset

Visibility: public

Behavior: Let Z be the time zone attribute of the receiver.

a) Compute floor(ZoneOffset(Z)/10°).

b) Return an instance of the class Integer whose value is the result of Step a).

15.2.19.7.30 Time#wday

wday

Visibility: public
Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute WeekDay(t).

¢) Return an instance of the class Integer whose value is the result of Step b)

15.2.19.7.31 Time#yday

yday

Visibility: public
Behavior:

©ISO/IEC 2012 — All rights reserved 263

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute DayWithin Year(t).
¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.32 Time#year

year

Visibility: public

Behavior:

a) Compute the local time from the receiver (see 15.2.19.4). Let ¢ be the result.
b) Compute YearFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step b).

15.2.19.7.33 Time#zone

zone

Visibility: public
Behavior: Let Z be the time zone attribute of the receiver.

a) Create a direct instance of the class String, the content of which represents the name
of Z. The exact content of the instance is implementation-defined.

b) Return the resulting instance.
15.2.20 IO
15.2.20.1 General description
An instance of the class I0 represents a stream, which is a source and/or a sink of data.

An instance of the class I0 has the following attributes:

readability flag: A boolean value which indicates whether the stream can handle input
operations.

An instance of the class I0 is said to be readable if and only if this flag is true.

Reading from a stream which is not readable raises a direct instance of the class I0Error.

264 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

writability flag: A boolean value which indicates whether the stream can handle output
operations.

An instance of the class 10 is said to be writable if and only if this flag is true.
Writing to a stream which is not writable raises a direct instance of the class I0Error.
openness flag: A boolean value which indicates whether the stream is open.

An instance of the class I0 is said to be open if and only if this flag is true. An instance
of the class I0 is said to be closed if and only if this flag is false.

A closed stream is neither readable nor writable.

buffering flag: A boolean value which indicates whether the data to be written to the
stream is buffered.

When this flag is true, the output to the receiver may be delayed until the instance methods
flush or close is invoked.

An instance of the class SystemCallError may be raised when the underlying system reported
an error during the execution of methods of the class IO.

The behavior of the method initialize of the class I0 is unspecified, i.e. whether a direct

instance of the class 10 other than the constnats STDIN, STDOUT and STDERR of the class
Object (see 15.2.1) can be created is unspecified.

NOTE Note that an instance of the class File, which is a subclass of the class I0, can be created by
the method new because the behavior of the method initialize is specified in 15.2.21.4.1.

In the following description of the methods of the class I0, a byte means an integer from 0 to
255.

15.2.20.2 Direct superclass

The class Object

15.2.20.3 Included modules

The following module is included in the class I0.
e Enumerable

15.2.20.4 Singleton methods

15.2.20.4.1 1I0O.open

10.open(*args, &block)

Visibility: public

©ISO/IEC 2012 — All rights reserved 265

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:

a) Invoke the method new on the receiver with all the elements of args as the arguments.
Let I be the resulting value.

b) If block is not given, return L.
c¢) Otherwise, call block with I as the argument. Let V be the resulting value.

d) Invoke the method close (see 15.2.20.5.1) on I with no arguments, even when an
exception is raised and not handled in Step c).

e) Return V.
EXAMPLE 1If block is given, the method close is invoked automatically.
File.open("data.txt"){|f|

puts f.read
X

If block is not given, the method close should be invoked explicitly.
f = File.open("data.txt")

puts f.read
f.close

NOTE The behavior of invoking the method new on the class I0 is unspecified. Therefore, the
behavior of invoking the method open on the class I0 is also unspecified; however, the method open
can be invoked on the class File, which is a subclass of the class I0.

15.2.20.5 Instance methods

15.2.20.5.1 1O+#close

close

Visibility: public
Behavior:
a) If the receiver is closed, raise a direct instance of the class I0Error.

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,
immediately write all the buffered data to the stream which the receiver represents.

c) Set the openness flag of the receiver to false.

d) Return an implementation-defined value.

15.2.20.5.2 IO+#closed?

266 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

closed?

Visibility: public
Behavior:

a) If the receiver is closed, return true.

b) Otherwise, return false.

15.2.20.5.3 1O0#each

each(&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) If the receiver is not readable, raise a direct instance of the class I0Error.
c) If the receiver has reached its end, return the receiver.

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

e) Create a direct instance of the class String whose content is the sequence of characters
read in Step d). Call block with this instance as an argument.

f) Continue processing from Step c).

15.2.20.5.4 IO+#each_byte

each byte (&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) If the receiver is not readable, raise a direct instance of the class I0Error.
c) If the receiver has reached its end, return the receiver.

d) Otherwise, read a single byte from the receiver. Call block with an argument, an
instance of the class Integer whose value is the byte.

©ISO/IEC 2012 — All rights reserved 267

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) Continue processing from Step c).

15.2.20.5.5 IO#-each_line

each_line(&block)

Visibility: public
Behavior: Same as the method each (see 15.2.20.5.3).

15.2.20.5.6 IO#eof?

eof?

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) If the receiver has reached its end, return true. Otherwise, return false.

15.2.20.5.7 I0#flush

flush

Visibility: public
Behavior:
a) If the receiver is not writable, raise a direct instance of the class I0Error.

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,
immediately write all the buffered data to the stream represented by the receiver.

¢) Return the receiver.

15.2.20.5.8 I1O0#getc

getc

Visibility: public
Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.

268 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) If the receiver has reached its end, return nil.

¢) Otherwise, read a character from the receiver. Return an instance of the class Object
which represents the character (see 15.2.10.1).

15.2.20.5.9 IO#gets

gets

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) If the receiver has reached its end, return nil.

¢) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

d) Create a direct instance of the class String whose content is the sequence of characters
read in Step c¢) and return this instance.

15.2.20.5.10 IO+#tinitialize_copy

initialize_copy(original)

Visibility: private
Behavior: The behavior of the method is unspecified.

15.2.20.5.11 IO#print

print(*args)

Visibility: public
Behavior:
a) For each element of args in the indexing order:

1) Let V be the element. If the element is nil, a conforming processor may create
a direct instance of the class String whose content is “nil” and let V' be the
instance.

2) Invoke the method write on the receiver with V' as the argument.

b) Return an implementation-defined value.

©ISO/IEC 2012 — All rights reserved 269

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.20.5.12 IO#putc

putc(obj)

Visibility: public
Behavior:

a) If obj is not an instance of the class Integer or an instance of the class String, the
behavior is unspecified. If obj is an instance of the class Integer whose value is smaller
than 0 or larger than 255, the behavior is unspecified.

b) If obj is an instance of the class Integer, create a direct instance S of the class String
whose content is a single character, whose character code is the value of 0bj.

c) If obj is an instance of the class String, create a direct instance S of the class String
whose content is the first character of 0bj.

d) Invoke the method write on the receiver with S as the argument.

e) Return obj.

15.2.20.5.13 IO#puts

puts(*args)

Visibility: public
Behavior:

a) If the length of args is 0, create a direct instance of the class String whose content is a
single character 0x0a and invoke the method write on the receiver with this instance
as an argument.

b) Otherwise, for each element E of args in the indexing order:

1) If E is an instance of the class Array, for each element X of F in the indexing
order:

i) If X is the same object as E, i.e. if E contains itself, invoke the method
write on the receiver with an instance of the class String, whose content is
implementation-defined.

ii) Otherwise, invoke the method write on the receiver with X as the argument.

2) Otherwise:

i) If F is nil, a conforming processor may create a direct instance of the class
String whose content is “nil” and let F be the instance.

270 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) If E is not an instance of the class String, invoke the method to_s on the E.
If the resulting value is an instance of the class String, let £ be the resulting
value. Otherwise, the behavior is unspecified.

iii) Invoke the method write on the receiver with E as the argument.

iv) If the last character of E is not 0x0a, create a direct instance of the class

String whose content is a single character Ox0a and invoke the method write
on the receiver with this instance as an argument.

¢) Return an implementation-defined value.

15.2.20.5.14 IO+#read

read(length=nil)

Visibility: public
Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.

b) If the receiver has reached its end:

1) If length is nil, create an empty instance of the class String and return that
instance.

2) If length is not nil, return nil.
¢) Otherwise:

1) If length is nil, read characters from the receiver until the receiver reaches its end.

2) If length is an instance of the class Integer, let N be the value of length. Other-
wise, the behavior is unspecified.

3) If N is smaller than 0, raise a direct instance of the class ArgumentError.

4) Read bytes from the receiver until N bytes are read or the receiver reaches its end.

d) Create a direct instance of the class String whose content is the sequence of characters
read in Step c¢) and return this instance.

15.2.20.5.15 1O+#readchar

readchar

Visibility: public

©ISO/IEC 2012 — All rights reserved 271

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Behavior:
a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) If the receiver has reached its end, raise a direct instance of the class EOFError.

¢) Otherwise, read a character from the receiver. Return an instance of the class Object
which represents the character.

15.2.20.5.16 IO+#readline

readline

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.

b) If the receiver has reached its end, raise a direct instance of the class EOFError.

¢) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

d) Create a direct instance of the class String whose content is the sequence of characters
read in Step c¢) and return this instance.

15.2.20.5.17 1O+#readlines

readlines

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) Create an empty direct instance A of the class Array.

c) If the receiver has reached to its end, return A.

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

e) Create a direct instance of the class String whose content is the sequence of characters
read in Step d) and append this instance to A.

f) Continue processing from Step c).

272 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.20.5.18 IO#sync

sync

Visibility: public
Behavior:

a) If the receiver is closed, raise a direct instance of the class I0Error.

b) If the buffering flag of the receiver is true, return false. Otherwise, return true.

15.2.20.5.19 IO#sync=

sync=(bool)

Visibility: public
Behavior:
a) If the receiver is closed, raise a direct instance of the class IOError.

b) If bool is a trueish object, set the buffering flag of the receiver to false. If bool is a
falseish object, set the buffering flag of the receiver to true.

¢) Return bool.

15.2.20.5.20 IO#write

write(str)

Visibility: public
Behavior:
a) If str is an instance of the class String, let S be str.

b) Otherwise, invoke the method to_s on str, and let S be the resulting value. If S is not
an instance of the class String, the behavior is unspecified.

c) If S is empty, return an instance of the class Integer whose value is 0.
d) If the receiver is not writable, raise a direct instance of the class I0Error.

e) Write all the characters in S to the stream which the receiver represents, preserving
their order.

f) Return an instance of the class Integer, whose value is implementation-defined.

©ISO/IEC 2012 — All rights reserved 273

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.21 File
15.2.21.1 General description
Instances of the class File represent opened files.

A conforming processor may raise an instance of the class SystemCallError during the execution
of the methods of the class File if the underlying system reports an error.

An instance of the class File has the following attribute:

path: The sequence of characters which represents the location of the file. The correct
syntax of paths is implementation-defined.

15.2.21.2 Direct superclass
The class I0
15.2.21.3 Singleton methods

15.2.21.3.1 File.exist?

File.exist?(path)

Visibility: public
Behavior:
a) If the file specified by path exists, return true.
b) Otherwise, return false.
15.2.21.4 Instance methods

15.2.21.4.1 File#initialize

initialize(path, mode="r")

Visibility: private
Behavior:
a) If path is not an instance of the class String, the behavior is unspecified.

b) If mode is not an instance of the class String whose content is a single character “r”
or “w”, the behavior is unspecified.

¢) Open the file specified by path in an implementation-defined way, and associate it with
the receiver.

274 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) Set the path of the receiver to the content of path.
e) Set the openness flag and the buffering flag of the receiver to true.

f) Set the readability flag and the writability flag of the receiver as follows:
1) If mode is an instance of the class String whose content is a single character “r”,
set the readability flag of the receiver to true and set the writability flag of the
receiver to false.

[13 v

2) If mode is an instance of the class String whose content is a single character “w”,
set the readability flag of the receiver to false and set the writability flag of the
receiver to true.

g) Return an implementation-defined value.

15.2.21.4.2 File#path

path

Visibility: public

Behavior: The method creates a direct instance of the class String whose content is the
path of the receiver, and returns this instance.

15.2.22 Exception
15.2.22.1 General description

Instances of the class Exception represent exceptions. The class Exception is a superclass of
all the other exception classes.

Instances of the class Exception have the following attribute.

message: An object returned by the method to_s (see 15.2.22.4.4).
When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel
is invoked on an instance of the class Exception, the message attribute shall be copied from the
receiver to the resulting value.
Instance of the class Exception represent exceptions. The class Exception is a super class of
the other exception classes (see Figure 1 in 15.1). Instances of these built-in subclasses are raised
in various erroneous conditions as described in this International Standard.
15.2.22.2 Direct superclass
The class Object

15.2.22.3 Singleton methods

15.2.22.3.1 Exception.exception

©ISO/IEC 2012 — All rights reserved 275

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Exception.exception(*args, &block)

Visibility: public
Behavior: Same as the method new (see 15.2.3.3.3).
15.2.22.4 Instance methods

15.2.22.4.1 Exception#exception

exception(*string)

Visibility: public
Behavior:
a) If the length of string is 0, return the receiver.
b) If the length of string is 1:
1) If the only argument is the same object as the receiver, return the receiver.
2) Otherwise let M be the argument.
i) Create a direct instance of the class of the receiver. Let E be the instance.
ii) Set the message attribute of £ to M.
iii) Return E.
c) Ifthelength of string is larger than 1, raise a direct instance of the class ArgumentError.

15.2.22.4.2 Exception#initialize

initialize(message=nil)

Visibility: private
Behavior:

a) Set the message attribute of the receiver to message.

b) Return an implementation-defined value.

15.2.22.4.3 Exception#message

276 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

message

Visibility: public

Behavior:

a) Invoke the method to_s on the receiver with no arguments.
b) Return the resulting value of the invocation.

15.2.22.4.4 Exception#to_s

to_s

Visibility: public
Behavior:
a) Let M be the message attribute of the receiver.
b) If M is nil, return an implementation-defined value.
¢) If M is not an instance of the class String, the behavior is unspecified.
d) Otherwise, return M.
15.2.23 StandardError
15.2.23.1 General description

Instances of the class StandardError represent standard errors, which can be handled in a
rescue-clause without a exception-class-list (see 11.5.2.5).

15.2.23.2 Direct superclass

The class Exception

15.2.24 ArgumentError

15.2.24.1 General description

Instances of the class ArgumentError represent argument errors.
15.2.24.2 Direct superclass

The class StandardError

15.2.25 LocalJumpError

Instances of the class LocalJumpError represent errors which occur while evaluating blocks and
JUMP-exTpressions.

©ISO/IEC 2012 — All rights reserved 277

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.25.1 Direct superclass
The class StandardError
15.2.25.2 Instance methods

15.2.25.2.1 LocalJumpError#exit_value

exit_value

Visibility: public

Behavior: The method returns the value of the instance variable @exit_value of the
receiver.

15.2.25.2.2 LocalJumpError#reason

reason

Visibility: public
Behavior: The method returns the value of the instance variable @reason of the receiver.
15.2.26 RangeError
15.2.26.1 General description
Instances of the class RangeError represent range errors.
15.2.26.2 Direct superclass
The class StandardError
15.2.27 RegexpError
15.2.27.1 General description
Instances of the class ArgumentError represent regular expression errors.
15.2.27.2 Direct superclass
The class StandardError
15.2.28 RuntimeError
15.2.28.1 General description

Instances of the class RuntimeError represent runtime errors, which are raised by the method
raise of the class Kernel by default (see 15.3.1.2.12).

278 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.28.2 Direct superclass
The class StandardError
15.2.29 TypeError
15.2.29.1 General description
Instances of the class TypeError represent type errors.
15.2.29.2 Direct superclass
The class StandardError
15.2.30 ZeroDivisionError
15.2.30.1 General description
Instances of the class ZeroDivisionError represent zero division errors.
15.2.30.2 Direct superclass
The class StandardError
15.2.31 NameError
Instances of the class NameError represent errors which occur while resolving names to values.
Instances of the class NameError have the following attribute.
name: The name a reference to which causes this exception to be raised.
When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel
is invoked on an instance of the class NameError, the name attribute shall be copied from the
receiver to the resulting value.
15.2.31.1 Direct superclass
The class StandardError
15.2.31.2 Instance methods

15.2.31.2.1 NameError#initialize

initialize(message=nil, name=nil)

Visibility: public
Behavior:

a) Set the name attribute of the receiver to the name.

©ISO/IEC 2012 — All rights reserved 279

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) Invoke the method initialize defined in the class Exception, which is a superclass of
the class NameError, as if a super-with-argument were evaluated with a list of arguments
which contains only message as the value of the argument-without-parentheses of the
super-with-argument.

¢) Return an implementation-defined value.

15.2.31.2.2 NameError#name

name

Visibility: public
Behavior: The method returns the name attribute of the receiver.
15.2.32 NoMethodError

Instances of the class NoMethodError represent errors which occur while invoking methods which
do not exist or which cannot be invoked.

Instances of the class NoMethodError have attributes called name (see 15.2.31) and arguments.
The values of these attributes are set in the method initialize (see 15.2.32.2.2).

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel
is invoked on an instance of the class NoMethodError, those attributes shall be copied from the
receiver to the resulting value.

15.2.32.1 Direct superclass

The class NameError

15.2.32.2 Instance methods

15.2.32.2.1 NoMethodError#targs

args

Visibility: public
Behavior: The method returns the value of the arguments attribute of the receiver.

15.2.32.2.2 NoMethodError#tinitialize

initialize(message=nil, name=nil, args=nil)

Visibility: private
Behavior:

280 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Set the arguments attribute of the receiver to the args.
b) Perform all the steps of the method initialize described in 15.2.31.2.1.
¢) Return an implementation-defined value.
15.2.33 IndexError
15.2.33.1 General description
Instances of the class IndexError represent index errors.
15.2.33.2 Direct superclass
The class StandardError
15.2.34 IOError
15.2.34.1 General description
Instances of the class I0Error represent input/output errors.
15.2.34.2 Direct superclass
The class StandardError
15.2.35 EOFError
15.2.35.1 General description
Instances of the class EOFError represent errors which occur when a stream has reached its end.
15.2.35.2 Direct superclass
The class I0Error
15.2.36 SystemCallError
15.2.36.1 General description

Instances of the class SystemCallError represent errors which occur while invoking the methods
of the class I0.

15.2.36.2 Direct superclass
The class StandardError

15.2.37 ScriptError

15.2.37.1 General description

Instances of the class ScriptError represent programming errors such as syntax errors and
loading errors.

©ISO/IEC 2012 — All rights reserved 281

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.2.37.2 Direct superclass

The class Exception

15.2.38 SyntaxError

15.2.38.1 General description

Instances of the class SyntaxError represent syntax errors.
15.2.38.2 Direct superclass

The class ScriptError

15.2.39 LoadError

15.2.39.1 General description

Instances of the class LoadError represent errors which occur while loading external programs
(see 15.3.1.2.13).

15.2.39.2 Direct superclass
The class ScriptError

15.3 Built-in modules
15.3.1 Kernel

15.3.1.1 General description

The module Kernel is included in the class Object. Unless overridden, instance methods defined
in the module Kernel can be invoked on any instance of the class Object.

15.3.1.2 Singleton methods

15.3.1.2.1 Kernel.¢

Kernel. ‘ (string)

Visibility: public
Behavior: The method ¢ is invoked in the form described in 8.7.6.3.7.

The method ¢ executes an external command corresponding to string. The external com-
mand executed by the method is implementation-defined.

When the method is invoked, take the following steps:
a) If string is not an instance of the class String, the behavior is unspecified.

282 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) Execute the command which corresponds to the content of string. Let R be the output
of the command.

c) Create a direct instance of the class String whose content is R, and return the instance.

15.3.1.2.2 Kernel.block_given?

Kernel.block_given?

Visibility: public
Behavior:

a) If the top of [block] is block-not-given, return false.

b) Otherwise, return true.

15.3.1.2.3 Kernel.eval

Kernel.eval(string)

Visibility: public
Behavior:
a) If string is not an instance of the class String, the behavior is unspecified.

b) Parse the content of the string as a program (see 10.1). If it fails, raise a direct instance
of the class SyntaxError.

c¢) Evaluate the program (see 10.1) within the execution context as it exists just before
this method invoked. Let V be the resulting value of the evaluation.

d) Return V.

In Step c), the local variable scope which corresponds to the program is considered as a
local variable scope which corresponds to a block in 9.2 d) 1).

EXAMPLE 1 The following program prints “123”.

x = 123
Kernel.eval("print x")

EXAMPLE 2 The following program raises an exception.

Kernel.eval("x = 123") # the scope of x is the program "x = 123".
print x # x is undefined here.

15.3.1.2.4 Kernel.global variables

©ISO/IEC 2012 — All rights reserved 283

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Kernel.global_variables

Visibility: public

Behavior: The method returns a new direct instance of the class Array which consists of
names of all the global variables. These names are represented by direct instances of either

the class String or the class Symbol. Which of those classes is chosen is implementation-
defined.

15.3.1.2.5 Kernel.iterator?

Kernel.iterator?

Visibility: public
Behavior: Same as the method Kernel.block given? (see 15.3.1.2.2).

15.3.1.2.6 Kernel.lambda

Kernel.lambda(&block)

Visibility: public

Behavior: The method creates an instance of the class Proc as Proc.new does (see 15.2.17.3.1).
However, the way in which block is evaluated differs from the one described in 11.3.3 except
when block is called by a yield-expression.

The differences are as follows.

a) Before 11.3.3 d), the number of arguments is checked as follows:

1) Let A be the list of arguments passed to the block. Let N, be the length of A.

2) If the block-parameter-list is of the form left-hand-side, and if N, is not 1, the
behavior is unspecified.

3) If the block-parameter-list is of the form multiple-left-hand-side:

i) If the multiple-left-hand-side is not of the form grouped-left-hand-side or packing-
left-hand-side:

I) Let N, be the number of multiple-left-hand-side-items of the multiple-
left-hand-side.

II) If N, < Np, raise a direct instance of the class ArgumentError.

IIT) If a packing-left-hand-side is omitted, and if N, > N, raise a direct
instance of the class ArgumentError.

284 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) If the multiple-left-hand-side is of the form grouped-left-hand-side, and if N,
is not 1, the behavior is unspecified.

b) In 11.3.3 e), when the evaluation of the block associated with a lambda invocation is
terminated by a return-expression or break-expression, the execution context is restored
to E, (i.e. the saved execution context), and the evaluation of the lambda invocation
is terminated.

The value of the 1lambda invocation is determined as follows:

1) If the jump-argument of the return-expression or the break-expression is present,
the value of the lambda invocation is the value of the jump-argument.

2) Otherwise, the value of the lambda invocation is nil.

15.3.1.2.7 Kernel.local_variables

Kernel.local_variables

Visibility: public

Behavior: The method returns a new direct instance of the class Array which contains all
the names of local variable bindings which meet the following conditions.

e The name of the binding is of the form local-variable-identifier.

e The binding can be resolved in the scope of local variables which includes the point of
invocations of this method by the process described in 9.2.

In the instance of the class Array returned by the method, names of the local variables are
represented by instances of either the class String or the class Symbol. Which of those

classes is chosen is implementation-defined.

15.3.1.2.8 Kernel.loop

Kernel.loop(&block)

Visibility: public
Behavior:

a) If block is not given, the behavior is unspecified.

b) Otherwise, repeat calling block.

15.3.1.2.9 Kernel.p

©ISO/IEC 2012 — All rights reserved 285

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Kernel.p(*args)

Visibility: public
Behavior:
a) For each element E of args, in the indexing order, take the following steps:

1) Invoke the method inspect (see 15.3.1.3.17) on E with no arguments and let X
be the resulting value of this invocation.

2) If X is not an instance of the class String, the behavior is unspecified.

3) Invoke the method write(see 15.2.20.5.20) on Object::STDOUT with X as the
argument.

4) Invoke the method write on Object::STDOUT with an argument, which is a new
direct instance of the class String whose content is a single character 0x0a.

b) Return an implementation-defined value.

15.3.1.2.10 Kernel.print

Kernel.print (*args)

Visibility: public

Behavior: Invoke the method print of the class I0 (see 15.2.20.5.11) on Object: : STDOUT
with the same arguments, and return the resulting value.

15.3.1.2.11 Kernel.puts

Kernel.puts(*args)

Visibility: public

Behavior: Invoke the method puts of the class I0 (see 15.2.20.5.13) on Object: : STDOUT
with the same arguments, and return the resulting value.

15.3.1.2.12 Kernel.raise

Kernel.raise(*args)

Visibility: public

286 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)
Behavior:
a) If the length of args is larger than 2, the behavior is unspecified.

b) If the length of args is 0:

1) If the location of the method invocation is within an operator-expressions of an
assignment-with-rescue-modifier, a fallback-statement-of-rescue-modifier-statement,
or a rescue-clause, let E be the current exception (see 14.3).

2) Otherwise, invoke the method new on the class RuntimeError with no argument.
Let E be the resulting value.

c) If the length of args is 1, let A be the only argument.

1) If A is an instance of the class String, invoke the method new on the class
RuntimeError with A as the only argument. Let E be the resulting instance.

2) Otherwise, invoke the method exception on A. Let E be the resulting value.

3) If F is not an instance of the class Exception, raise a direct instance of the class
TypeError.

d) If the length of args is 2, let F' and S be the first and the second argument, respectively.

1) Invoke the method exception on F with S as the only argument. Let E be the
resulting value.

2) If F is not an instance of the class Exception, raise a direct instance of the class
TypeError.

e) Raise F.

15.3.1.2.13 Kernel.require

Kernel.require(string)

Visibility: public

Behavior: The method require evaluates the external program P corresponding to string.
The way in which P is determined from string is implementation-defined.

When the method is invoked, take the following steps:

a) If string is not an instance of the class String, the behavior is unspecified.
b) Search for the external program P corresponding to string.

c) If the program does not exist, raise a direct instance of the class LoadError.

©ISO/IEC 2012 — All rights reserved 287

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) If P is not of the form program (see 10.1), raise a direct instance of the class SyntaxError.

e) Change the state of the execution context temporarily for the evaluation of P as follows:

1) [self] contains only one object which is the object at the bottom of [self] in the
current execution context.

2) [class-module-list] contains only one list whose only element is the class Object.

3) [default-method-visibility] contains only one visibility, which is the private visi-
bility.

4) All the other attributes of the execution context are empty stacks.
f) Evaluate P within the execution context set up in Step e).

g) Restore the state of the execution context as it is just before Step e), even when an
exception is raised and not handled during the evaluation of P.

NOTE The evaluation of P may affect the restored execution context if it changes the at-
tributes of objects in the original execution context.

h) Unless an exception is raised and not handled in Step f), return true.
15.3.1.3 Instance methods

15.3.1.3.1 Kernel#==

==(other)

Visibility: public

Behavior:

a) If the receiver and other are the same object, return true.
b) Otherwise, return false.

If the class Object is not the root of the class inheritance tree, the method == shall be defined
in the class which is the root of the class inheritance tree instead of in the module Kernel.

15.3.1.3.2 Kernel#===

===(other)

Visibility: public

Behavior:

288 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) If the receiver and other are the same object, return true.

b) Otherwise, invoke the method == on the receiver with other as the only argument. Let
V' be the resulting value.

¢) 1If V is a trueish object, return true. Otherwise, return false.

15.3.1.3.3 Kernel#*¢

“(string)

Visibility: private
Behavior: Same as the method Kernel. ¢ (see 15.3.1.2.1).

15.3.1.3.4 Kernel#_.id__

_id__

Visibility: public
Behavior: Same as the method object_id (see 15.3.1.3.33).

15.3.1.3.5 Kernel#_send__

__send__(symbol, *args, &block)

Visibility: public
Behavior: Same as the method send (see 15.3.1.3.44).

If the class Object is not the root of the class inheritance tree, the method __send__ shall be

defined in the class which is the root of the class inheritance tree instead of in the module
Kernel.

15.3.1.3.6 Kernel#block _given?

block_given?

Visibility: private
Behavior: Same as the method Kernel.block given? (see 15.3.1.2.2).

15.3.1.3.7 Kernel#class

©ISO/IEC 2012 — All rights reserved 289

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

class

Visibility: public

Behavior: The method returns the class of the receiver.

15.3.1.3.8 Kernel#clone

clone

Visibility: public

Behavior:

a) If the receiver is an instance of one of the following classes: NilClass, TrueClass,
FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class
TypeError.

b) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

¢) For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

d) If the receiver is associated with a singleton class, let E, be the singleton class, and
take the following steps:

)

5)

Create a singleton class whose direct superclass is the direct superclass of F,. Let
E,, be the singleton class.

For each binding B,; of the constants of E,, create a variable binding with the
same name and value as B, in the set of bindings of constants of E,.

For each binding By, of the class variables of E,, create a variable binding with
the same name and value as B,o in the set of bindings of class variables of E,,.

For each binding B,, of the instance methods of E,, create a method binding with
the same name and value as B,, in the set of bindings of instance methods of FE,,.

Associate O with E,.

e) Invoke the method initialize copy on O with the receiver as the argument.

f) Return O.

15.3.1.3.9 Kernel#dup

290

©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

dup

Visibility: public
Behavior:

a) If the receiver is an instance of one of the following classes: NilClass, TrueClass,
FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class
TypeError.

b) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

¢) For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

d) Invoke the method initialize_copy on O with the receiver as the argument.
e) Return O.

15.3.1.3.10 Kernel#eql?

eql?(other)

Visibility: public
Behavior: Same as the method == (see 15.3.1.3.1).

15.3.1.3.11 Kernel#equal?

equal?(other)

Visibility: public

Behavior: Same as the method == (see 15.3.1.3.1).
If the class Object is not the root of the class inheritance tree, the method equal? shall be
defined in the class which is the root of the class inheritance tree instead of in the module

Kernel.

15.3.1.3.12 Kernel#eval

eval (string)

Visibility: private
Behavior: Same as the method Kernel.eval (see 15.3.1.2.3).

©ISO/IEC 2012 — All rights reserved 291

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.13 Kernel#extend

extend (*module_list)

Visibility: public
Behavior: Let R be the receiver of the method.
a) If the length of module_list is 0, raise a direct instance of the class ArgumentError.

b) For each element A of module_list, take the following steps:

1) If A is not an instance of the class Module, raise a direct instance of the class
TypeError.

2) If Ais an instance of the class Class, raise a direct instance of the class TypeError.
3) Invoke the method extend object on A with R as the only argument.

4) Invoke the method extended on A with R as the only argument.
c¢) Return R.

15.3.1.3.14 Kernel#global_variables

global_variables

Visibility: private
Behavior: Same as the method Kernel.global variables (see 15.3.1.2.4).

15.3.1.3.15 Kernel#hash

hash

Visibility: public

Behavior: The method returns an instance of the class Integer. When invoked on the
same object, the method shall always return an instance of the class Integer whose value
is the same.

When a conforming processor overrides the method eql? (see 15.3.1.3.10), it shall override
the method hash in the same class or module in which the method eql? is overridden
in such a way that, if an invocation of the method eql? on an object with an argument
returns a trueish object, invocations of the method hash on the object and the argument
return the instances of the class Integer with the same value.

292 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.16 Kernel#initialize_copy

initialize_copy(original)

Visibility: private

Behavior: The method initialize_copy is invoked when an object is created by the
method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9).

When the method is invoked, take the following steps:

a) If the classes of the receiver and the original are not the same class, raise a direct
instance of the class TypeError.

b) Return an implementation-defined value.

15.3.1.3.17 Kernel#inspect

inspect

Visibility: public
Behavior: The method returns a new direct instance of the class String, the content of

which represents the state of the receiver. The content of the resulting instance of the class
String is implementation-defined.

15.3.1.3.18 Kernel#instance_eval

instance_eval(string = nil, &block)

Visibility: public
Behavior:

a) If the receiver is an instance of the class Integer or the class Symbol, or if the receiver
is one of nil, true, or false, then the behavior is unspecified.

b) If the receiver is not associated with a singleton class, create a new singleton class. Let
M be the newly created singleton class.

c) If the receiver is associated with a singleton class, let M be that singleton class.

d) Take steps b) through the last step of the method class_eval of the class Module (see
15.2.2.4.15).

If the class Object is not the root of the class inheritance tree, the method instance_eval shall
be defined in the class which is the root of the class inheritance tree instead of in the module
Kernel.

©ISO/IEC 2012 — All rights reserved 293

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.19 Kernel#instance_of?

instance_of?(module)

Visibility: public
Behavior: Let C be the class of the receiver.

a) If module is not an instance of the class Class or the class Module, raise a direct
instance of the class TypeError.

b) If module and C are the same object, return true.
¢) Otherwise, return false.

15.3.1.3.20 Kernel#instance_variable_defined?

instance_variable_defined? (symbol)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, return true.

d) Otherwise, return false.

15.3.1.3.21 Kernel#instance_variable_get

instance_variable_get (symbol)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, return the value of the binding.

294 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

d) Otherwise, return nil.

15.3.1.3.22 Kernel#instance_variable_set

instance_variable_set (symbol, obj)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, replace the value of the binding with obj.

d) Otherwise, create a variable binding with name N and value 0bj in the set of bindings
of instance variables of the receiver.

e) Return obj.

15.3.1.3.23 Kernel#instance_variables

instance_variables

Visibility: public

Behavior: The method returns a new direct instance of the class Array which consists of
names of all the instance variables of the receiver. These names are represented by direct
instances of either the class String or the class Symbol. Which of those classes is chosen is
implementation-defined.

15.3.1.3.24 Kernel#is_a?

is_a?(module)

Visibility: public
Behavior:

a) If module is not an instance of the class Class or the class Module, raise a direct
instance of the class TypeError.

b) Let C be the class of the receiver.

©ISO/IEC 2012 — All rights reserved 295

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

¢) If module is an instance of the class Class and one of the following conditions holds,
return true.

e The module and C are the same object.
e The module is a superclass of C.

e The module and the singleton class of the receiver are the same object.

d) If module is an instance of the class Module and is included in C' or one of the super-
classes of C| return true.

e) Otherwise, return false.

15.3.1.3.25 Kernel#iterator?

iterator?

Visibility: private
Behavior: Same as the method Kernel.iterator? (see 15.3.1.2.5).

15.3.1.3.26 Kernel#kind_of?

kind_of? (module)

Visibility: public
Behavior: Same as the method is_a? (see 15.3.1.3.24).

15.3.1.3.27 Kernel#lambda

lambda (&block)

Visibility: private
Behavior: Same as the method Kernel.lambda (see 15.3.1.2.6).

15.3.1.3.28 Kernel#local_variables

local_variables

Visibility: private
Behavior: Same as the method Kernel.local _variables (see 15.3.1.2.7).

296 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.29 Kernel#loop

loop(&block)

Visibility: private
Behavior: Same as the method Kernel.loop (see 15.3.1.2.8).

15.3.1.3.30 Kernel#method missing

method missing(symbol, *args)

Visibility: private
Behavior:

a) If symbol is not an instance of the class Symbol, the behavior is unspecified.

b) Otherwise, raise a direct instance of the class NoMethodError which has symbol as
its name attribute and args as its arguments attribute. A direct instance of the
class NameError which has symbol as its name attribute may be raised instead of
NoMethodError if the method is invoked in 13.3.3 e) during evaluation of a local-
variable-identifier as a method invocation.

If the class Object is not the root of the class inheritance tree, the method method missing
shall be defined in the class which is the root of the class inheritance tree instead of in the
module Kernel.

15.3.1.3.31 Kernel#methods

methods (all=true)

Visibility: public
Behavior: Let C be the class of the receiver.

a) If all is a trueish object, invoke the method instance methods on C' with no arguments
(see 15.2.2.4.33), and return the resulting value.

b) If all is a falseish object, invoke the method singleton methods on the receiver with
false as the only argument (see 15.3.1.3.45), and return the resulting value.

15.3.1.3.32 Kernel#nil?

©ISO/IEC 2012 — All rights reserved 297

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

nil?

Visibility: public
Behavior:

a) If the receiver is nil, return true.

b) Otherwise, return false.

15.3.1.3.33 Kernel#object_id

object_id

Visibility: public
Behavior: The method returns an instance of the class Integer with the same value

whenever it is invoked on the same object. When invoked on two distinct objects, the
method returns an instance of the class Integer with different value for each invocation.

15.3.1.3.34 Kernel#p

p(*args)

Visibility: private
Behavior: Same as the method Kernel.p (see 15.3.1.2.9).

15.3.1.3.35 Kernel#print

print (*args)

Visibility: private
Behavior: Same as the method Kernel.print (see 15.3.1.2.10).

15.3.1.3.36 Kernel#private_methods

private methods(all=true)

Visibility: public
Behavior:

298 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

a) Let MV be the private visibility.

b) Create an empty direct instance A of the class Array.

c) If the receiver is associated with a singleton class, let C' be the singleton class.
d) Let I be the set of bindings of instance methods of C.

For each binding B of I, let N and V be the name and the value of B respectively, and
take the following steps:

1) If V is undef, or the visibility of V is not MV, skip the next two steps.
2) Let S be either a new direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which is chosen as the value

of § is implementation-defined.

3) Unless A contains the element of the same name (if S is an instance of the class

Symbol) or the same content (if S is an instance of the class String) as S, append
S to A.

e) For each module M in included module list of C, take step d), assuming that C' in that
step to be M.

f) Let new C be the class of the receiver, and take step d).
g) If all is a trueish object:

1) Take step e).

2) If C does not have a direct superclass, return A.

3) Let new C be the direct superclass of current C.

4) Take step d), and then, repeat from Step g) 1).
h) Return A.

15.3.1.3.37 Kernel#protected _methods

protected methods (all=true)

Visibility: public

Behavior: Same as the method private methods (see 15.3.1.3.36), except to let MV be
the protected visibility in 15.3.1.3.36 a).

15.3.1.3.38 Kernel#public_methods

©ISO/IEC 2012 — All rights reserved 299

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

public_methods(all=true)

Visibility: public

Behavior: Same as the method private methods (see 15.3.1.3.36), except to let MV be
the public visibility in 15.3.1.3.36 a).

15.3.1.3.39 Kernel#puts

puts(*args)

Visibility: private
Behavior: Same as the method Kernel.puts (see 15.3.1.2.11).

15.3.1.3.40 Kernel#raise

raise(*args)

Visibility: private
Behavior: Same as the method Kernel.raise (see 15.3.1.2.12).

15.3.1.3.41 Kernel#remove_instance_variable

remove_instance_variable (symbol)

Visibility: private
Behavior:
a) Let N be the name designated by symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has symbol as its name attribute.

¢) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, let V' be the value of the binding.

1) Remove the binding from the set of bindings of instance variables of the receiver.

2) Return V.

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name
attribute.

300 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.42 Kernel#require

require(*args)

Visibility: private
Behavior: Same as the method Kernel.require (see 15.3.1.2.13).

15.3.1.3.43 Kernel#respond_to?

respond_to? (symbol, include_private=false)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) Search for a binding of an instance method named N starting from the receiver of the
method as described in 13.3.4.

¢) If a binding is found, let V be the value of the binding.
1) If V is undef, return false.
2) If the visibility of V' is private:
i) If include_private is a trueish object, return true.
ii) Otherwise, return false.
3) Otherwise, return true.
d) Otherwise, return false.

15.3.1.3.44 Kernel#send

send (symbol, *args, &block)

Visibility: public
Behavior:
a) Let N be the name designated by symbol.

b) Invoke the method named N on the receiver with args as arguments and block as the
block, if any.

¢) Return the resulting value of the invocation.

©ISO/IEC 2012 — All rights reserved 301

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.1.3.45 Kernel#singleton_methods

singleton methods (all=true)

Visibility: public

Behavior: Let F be the singleton class of the receiver.

a) Create an empty direct instance A of the class Array.
b) Let I be the set of bindings of instance methods of E.

For each binding B of I, let N and V be the name and the value of B respectively, and
take the following steps:

1) If V is undef, or the visibility of V is private, skip the next two steps.

2) Let S be either a new direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which is chosen as the value
of § is implementation-defined.

3) Unless A contains the element of the same name (if S is an instance of the class

Symbol) or the same content (if S is an instance of the class String), append S
to A.

c) If all is a trueish object, for each module M in included module list of E, take step b),
assuming that F in that step to be M.

d) Return A.

15.3.1.3.46 Kernel#to_s

to_s

Visibility: public
Behavior: The method returns a newly created direct instance of the class String, the

content of which is the string representation of the receiver. The content of the resulting
instance of the class String is implementation-defined.

15.3.2 Enumerable
15.3.2.1 General description

The module Enumerable provides methods which iterates over the elements of the object using
the method each.

In the following description of the methods of the module Enumerable, an element of the
receiver means one of the values which is yielded by the method each.

302 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.2.2 Instance methods

15.3.2.2.1 Enumerable#all?

all?(&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) For each element X which the method each yields:

1) If block is given, call block with X as the argument.

If this call results in a falseish object, return false.

2) If block is not given, and X is a falseish object, return false.

¢) Return true.

15.3.2.2.2 Enumerable#any?

any? (&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) For each element X which each yields:

1) If block is given, call block with X as the argument.

If this call results in a trueish object, return true.

2) If block is not given, and X is a trueish object, return true.

¢) Return false.

15.3.2.2.3 Enumerable#collect

collect (&block)

Visibility: public

©ISO/IEC 2012 — All rights reserved 303

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

Behavior:

a) If block is not given, the behavior is unspecified.

b) Create an empty direct instance A of the class Array.
¢) Invoke the method each on the receiver.

d) For each element X which each yields, call block with X as the argument and append
the resulting value to A.

e) Return A.

15.3.2.2.4 Enumerable#detect

detect (ifnone=nil, &block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.
b) Invoke the method each on the receiver.

¢) For each element X which each yields, call block with X as the argument. If this call
results in a trueish object, return X.

d) Return ifnone.

15.3.2.2.5 Enumerable#each_with_index

each_with_index (&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) Let i be 0.

¢) Invoke the method each on the receiver.

d) For each element X which each yields:
1) Call block with X and ¢ as the arguments.
2) Increase i by 1.

e) Return the receiver.

304 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.2.2.6 Enumerable#entries

entries

Visibility: public

Behavior:

a) Create an empty direct instance A of the class Array.
b) Invoke the method each on the receiver.

¢) For each element X which each yields, append X to A.
d) Return A.

15.3.2.2.7 Enumerable#find

find (ifnone=nil, &block)

Visibility: public
Behavior: Same as the method detect (see 15.3.2.2.4).

15.3.2.2.8 Enumerable#find_all

find_all(&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) Create an empty direct instance A of the class Array.
¢) Invoke the method each on the receiver.

d) For each element X which each yields, call block with X as the argument. If this call
results in a trueish object, append X to A.

e) Return A.

15.3.2.2.9 Enumerable#grep

©ISO/IEC 2012 — All rights reserved 305

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

grep (pattern, &block)

Visibility: public

Behavior:

a) Create an empty direct instance A of the class Array.
b) Invoke the method each on the receiver.

¢) For each element X which each yields, invoke the method === on pattern with X as
the argument.

If this invocation results in a trueish object:

1) If block is given, call block with X as the argument and append the resulting value
to A.

2) Otherwise, append X to A.
d) Return A.

15.3.2.2.10 Enumerable#include?

include?(0bj)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.

b) For each element X which each yields, invoke the method == on X with obj as the
argument. If this invocation results in a trueish object, return true.

¢) Return false.

15.3.2.2.11 Enumerable#inject

inject (*args, &block)

Visibility: public
Behavior:

a) If block is not given, the behavior is unspecified.

306 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) If the length of args is 2, the behavior is unspecified. If the length of args is larger
than 2, raise a direct instance of the class ArgumentError.

c) Invoke the method each on the receiver. If the method each does not yield any element,
return nil.

d) For each element X which each yields:

1) If X is the first element, and the length of args is 0, let V be X.

2) If X is the first element, and the length of args is 1, call block with two arguments,
which are the only element of args and X. Let V be the resulting value of this call.

3) If X is not the first element, call block with V and X as the arguments. Let new
V be the resulting value of this call.

e) Return V.

15.3.2.2.12 Enumerable##map

map (&block)

Visibility: public
Behavior: Same as the method collect (see 15.3.2.2.3).

15.3.2.2.13 Enumerable#max

max (&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) 1If the method each does not yield any elements, return nil.
¢) For each element X which the method each yields:
1) If X is the first element, let V be X.

2) Otherwise:
i) If block is given:

I) Call block with X and V as the arguments. Let D be the result of this
call.

©ISO/IEC 2012 — All rights reserved 307

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

IT) If D is not an instance of the class Integer, the behavior is unspecified.
III) If the value of D is larger than 0, let new V be X.
ii) If block is not given:

I) Invoke the method <=> on X with V as the argument. Let D be the
result of this invocation.

IT) If D is not an instance of the class Integer, the behavior is unspecified.

III) If the value of D is larger than 0, let new V be X.
d) Return V.

15.3.2.2.14 Enumerable##member?

member? (0bj)

Visibility: public
Behavior: Same as the method include? (see 15.3.2.2.10).

15.3.2.2.15 Enumerable#min

min(&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) If the method each does not yield any elements, return nil.
c) For each element X which the method each yields:

1) If X is the first element, let V be X.

2) Otherwise:

i) If block is given:

I) Call block with X and V as the arguments. Let D be the result of this
call.

IT) If D is not an instance of the class Integer, the behavior is unspecified.

III) If the value of D is smaller than 0, let new V be X.

308 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

ii) If block is not given:

I) Invoke the method <=> on X with V as the argument. Let D be the
result of this invocation.

IT) If D is not an instance of the class Integer, the behavior is unspecified.

III) If the value of D is smaller than 0, let new V be X.
d) Return V.

15.3.2.2.16 Enumerable#partition

partition(&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) Create two empty direct instances of the class Array T and F.

¢) Invoke the method each on the receiver.

d) For each element X which each yields, call block with X as the argument.

If this call results in a trueish object, append X to T. If this call results in a falseish
object, append X to F.

e) Return a newly created an instance of the class Array, which contains only 7" and F
in this order.

15.3.2.2.17 Enumerable#reject

reject (&block)

Visibility: public

Behavior:

a) If block is not given, the behavior is unspecified.

b) Create an empty direct instance A of the class Array.
¢) Invoke the method each on the receiver.

d) For each element X which each yields, call block with X as the argument. If this call
results in a falseish object, append X to A.

©ISO/IEC 2012 — All rights reserved 309

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

e) Return A.

15.3.2.2.18 Enumerable#select

select (&block)

Visibility: public
Behavior: Same as the method find_all (see 15.3.2.2.8).

15.3.2.2.19 Enumerable#sort

sort (&block)

Visibility: public

Behavior:

a) Create an empty direct instance A of the class Array.
b) Invoke the method each on the receiver.

¢) Insert all the elements which the method each yields into A. For any two elements E;
and E; of A, the following condition shall hold:

1) Let i and j be the index of E; and Ej, respectively.

2) If block is given:

i) Suppose block is called with E; and E; as the arguments.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is unspecified.

iii) If this invocation results in an instance of the class Integer whose value is
larger than 0, j shall be larger than .

iv) If this invocation results in an instance of the class Integer whose value is
smaller than 0, ¢ shall be larger than j.

3) If block is not given:

i) Suppose the method <=> is invoked on F; with E; as the argument.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is unspecified.

iii) If this invocation results in an instance of the class Integer whose value is
larger than 0, j shall be larger than .

310 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

iv) If this invocation results in an instance of the class Integer whose value is
smaller than 0, ¢ shall be larger than j.

d) Return A.

15.3.2.2.20 Enumerable#to_a

to_a

Visibility: public

Behavior: Same as the method entries (see 15.3.2.2.6).
15.3.3 Comparable
15.3.3.1 General description

The module Comparable provides methods which compare the receiver and an argument using
the method <=>.

15.3.3.2 Instance methods

15.3.3.2.1 Comparable#<

<(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with other as the argument. Let I be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is unspecified.

c) If the value of I is smaller than 0, return true. Otherwise, return false.

15.3.3.2.2 Comparable#<=

<=(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with other as the argument. Let I be the
resulting value of this invocation.

©ISO/IEC 2012 — All rights reserved 311

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

b) 1If I is not an instance of the class Integer, the behavior is unspecified.

c) If the value of I is smaller than or equal to 0, return true. Otherwise, return false.

15.3.3.2.3 Comparable#>

> (other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with other as the argument. Let I be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is unspecified.

c) If the value of I is larger than 0, return true. Otherwise, return false.

15.3.3.2.4 Comparable#>=

>=(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with other as the argument. Let I be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is unspecified.

c) If the value of I is larger than or equal to 0, return true. Otherwise, return false.

15.3.3.2.5 Comparable#==

==(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with other as the argument. Let I be the
resulting value of this invocation.

b) 1If I is not an instance of the class Integer, the behavior is unspecified.
c) If the value of I is 0, return true. Otherwise, return false.

312 ©ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC 30170:2012(E)

15.3.3.2.6 Comparable#between?

between? (left, right)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with left as the argument. Let [; be the resulting
value of this invocation.

1) If L is not an instance of the class Integer, the behavior is unspecified.

2) If the value of [; is smaller than 0, return false.

b) Invoke the method <=> on the receiver with right as the argument. Let I be the
resulting value of this invocation.

1) If I, is not an instance of the class Integer, the behavior is unspecified.

2) If the value of I is larger than 0, return false. Otherwise, return true.

©ISO/IEC 2012 — All rights reserved 313

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

ISO/IEC FDIS 30170:2012(E)

ICS 35.060

Price based on 313 pages

© ISO/IEC 2012 — All rights reserved

This standard was downloaded from the normsplash.com

https://www.normsplash.com/ISO/193199993/ISO-IEC-30170?src=fpdf

	Contents
	Foreword
	Introduction
	Scope
	Normative references
	Conformance
	Terms and definitions
	Notational conventions
	General description
	Syntax
	General description
	Productions
	Syntactic term sequences
	Syntactic terms
	Conceptual names

	Semantics
	Attributes of execution contexts

	Fundamental concepts
	Objects
	Variables
	General description
	Instance variables

	Methods
	Blocks
	Classes, singleton classes, and modules
	General description
	Classes
	Singleton classes
	Inheritance
	Modules

	Boolean values

	Execution contexts
	General description
	The initial state

	Lexical structure
	General description
	Program text
	Line terminators
	Whitespace
	Comments
	End-of-program markers
	Tokens
	General description
	Keywords
	Identifiers
	Punctuators
	Operators
	Literals
	General description
	Numeric literals
	String literals
	General description
	Single quoted strings
	Double quoted strings
	Quoted non-expanded literal strings
	Quoted expanded literal strings
	Here documents
	External command execution

	Array literals
	Regular expression literals
	Symbol literals

	Scope of variables
	General description
	Scope of local variables
	Scope of global variables

	Program structure
	Program
	Compound statement

	Expressions
	General description
	Logical expressions
	General description
	Logical NOT expressions
	Logical AND expressions
	Logical OR expressions

	Method invocation expressions
	General description
	Method arguments
	Blocks
	The super expression
	The yield expression

	Operator expressions
	General description
	Assignments
	General description
	Single assignments
	General description
	Single variable assignments
	Scoped constant assignments
	Single indexing assignments
	Single method assignments

	Abbreviated assignments
	General description
	Abbreviated variable assignments
	Abbreviated indexing assignments
	Abbreviated method assignments

	Multiple assignments
	Assignments with rescue modifiers

	Unary operator expressions
	General description
	The defined? expression

	Binary operator expressions

	Primary expressions
	General description
	Control structures
	General description
	Conditional expressions
	General description
	The if expression
	The unless expression
	The case expression
	Conditional operator expression

	Iteration expressions
	General description
	The while expression
	The until expression
	The for expression

	Jump expressions
	General description
	The return expression
	The break expression
	The next expression
	The redo expression
	The retry expression

	The begin expression

	Grouping expression
	Variable references
	General description
	Constants
	Scoped constants
	Global variables
	Class variables
	Instance variables
	Local variables or method invocations
	General description
	Determination of the type of local variable identifiers
	Local variables
	Method invocations

	Pseudo variables
	General description
	The nil expression
	The true expression and the false expression
	The self expression

	Object constructors
	Array constructor
	Hash constructor
	Range expression

	Statements
	General description
	Expression statement
	The if modifier statement
	The unless modifier statement
	The while modifier statement
	The until modifier statement
	The rescue modifier statement

	Classes and modules
	Modules
	General description
	Module definition
	Module inclusion

	Classes
	General description
	Class definition
	Inheritance
	Instance creation

	Methods
	Method definition
	Method parameters
	Method invocation
	Method lookup
	Method visibility
	General description
	Public methods
	Private methods
	Protected methods
	Visibility change

	The alias statement
	The undef statement

	Singleton classes
	General description
	Singleton class definition
	Singleton method definition

	Exceptions
	General description
	Cause of exceptions
	Exception handling

	Built-in classes and modules
	General description
	Built-in classes
	Object
	General description
	Direct superclass
	Included modules
	Constants
	Instance methods
	Object#initialize

	Module
	General description
	Direct superclass
	Singleton methods
	Module.constants
	Module.nesting

	Instance methods
	Module#<=>
	Module#<
	Module#<=
	Module#>
	Module#>=
	Module#==
	Module#===
	Module#alias_method
	Module#ancestors
	Module#append_features
	Module#attr
	Module#attr_accessor
	Module#attr_reader
	Module#attr_writer
	Module#class_eval
	Module#class_variable_defined?
	Module#class_variable_get
	Module#class_variable_set
	Module#class_variables
	Module#const_defined?
	Module#const_get
	Module#const_missing
	Module#const_set
	Module#constants
	Module#extend_object
	Module#extended
	Module#include
	Module#include?
	Module#included
	Module#included_modules
	Module#initialize
	Module#initialize_copy
	Module#instance_methods
	Module#method_defined?
	Module#module_eval
	Module#private
	Module#protected
	Module#public
	Module#remove_class_variable
	Module#remove_const
	Module#remove_method
	Module#undef_method

	Class
	General description
	Direct superclass
	Instance methods
	Class#initialize
	Class#initialize_copy
	Class#new
	Class#superclass

	NilClass
	General description
	Direct superclass
	Instance methods
	NilClass#&
	NilClass#|
	NilClass#^
	NilClass#nil?
	NilClass#to_s

	TrueClass
	General description
	Direct superclass
	Instance methods
	TrueClass#&
	TrueClass#|
	TrueClass#^
	TrueClass#to_s

	FalseClass
	General description
	Direct superclass
	Instance methods
	FalseClass#&
	FalseClass#|
	FalseClass#^
	FalseClass#to_s

	Numeric
	General description
	Direct superclass
	Included modules
	Instance methods
	Numeric#+@
	Numeric#-@
	Numeric#abs
	Numeric#coerce

	Integer
	General description
	Direct superclass
	Instance methods
	Integer#<=>
	Integer#==
	Integer#+
	Integer#-
	Integer#*
	Integer#/
	Integer#%
	Integer#‾
	Integer#&
	Integer#|
	Integer#^
	Integer#<<
	Integer#>>
	Integer#ceil
	Integer#downto
	Integer#eql?
	Integer#floor
	Integer#hash
	Integer#next
	Integer#round
	Integer#succ
	Integer#times
	Integer#to_f
	Integer#to_i
	Integer#to_s
	Integer#truncate
	Integer#upto

	Float
	General description
	Direct superclass
	Instance methods
	Float#<=>
	Float#==
	Float#+
	Float#-
	Float#*
	Float#/
	Float#%
	Float#ceil
	Float#finite?
	Float#floor
	Float#infinite?
	Float#round
	Float#to_f
	Float#to_i
	Float#truncate

	String
	General description
	Direct superclass
	Included modules
	Upper-case and lower-case characters
	Instance methods
	String#<=>
	String#==
	String#=‾
	String#+
	String#*
	String#[]
	String#capitalize
	String#capitalize!
	String#chomp
	String#chomp!
	String#chop
	String#chop!
	String#downcase
	String#downcase!
	String#each_line
	String#empty?
	String#eql?
	String#gsub
	String#gsub!
	String#hash
	String#include?
	String#index
	String#initialize
	String#initialize_copy
	String#intern
	String#length
	String#match
	String#replace
	String#reverse
	String#reverse!
	String#rindex
	String#scan
	String#size
	String#slice
	String#split
	String#sub
	String#sub!
	String#to_f
	String#to_i
	String#to_s
	String#to_sym
	String#upcase
	String#upcase!

	Symbol
	General description
	Direct superclass
	Instance methods
	Symbol#===
	Symbol#id2name
	Symbol#to_s
	Symbol#to_sym

	Array
	General description
	Direct superclass
	Included modules
	Singleton methods
	Array.[]

	Instance methods
	Array#+
	Array#*
	Array#<<
	Array#[]
	Array#[]=
	Array#clear
	Array#collect!
	Array#concat
	Array#delete_at
	Array#each
	Array#each_index
	Array#empty?
	Array#first
	Array#index
	Array#initialize
	Array#initialize_copy
	Array#join
	Array#last
	Array#length
	Array#map!
	Array#pop
	Array#push
	Array#replace
	Array#reverse
	Array#reverse!
	Array#rindex
	Array#shift
	Array#size
	Array#slice
	Array#unshift

	Hash
	General description
	Direct superclass
	Included modules
	Instance methods
	Hash#==
	Hash#[]
	Hash#[]=
	Hash#clear
	Hash#default
	Hash#default=
	Hash#default_proc
	Hash#delete
	Hash#each
	Hash#each_key
	Hash#each_value
	Hash#empty?
	Hash#has_key?
	Hash#has_value?
	Hash#include?
	Hash#initialize
	Hash#initialize_copy
	Hash#key?
	Hash#keys
	Hash#length
	Hash#member?
	Hash#merge
	Hash#replace
	Hash#shift
	Hash#size
	Hash#store
	Hash#value?
	Hash#values

	Range
	General description
	Direct superclass
	Included modules
	Instance methods
	Range#==
	Range#===
	Range#begin
	Range#each
	Range#end
	Range#exclude_end?
	Range#first
	Range#include?
	Range#initialize
	Range#last
	Range#member?

	Regexp
	General description
	Direct superclass
	Constants
	Patterns
	Matching process
	Singleton methods
	Regexp.compile
	Regexp.escape
	Regexp.last_match
	Regexp.quote

	Instance methods
	Regexp#==
	Regexp#===
	Regexp#=‾
	Regexp#casefold?
	Regexp#initialize
	Regexp#initialize_copy
	Regexp#match
	Regexp#source

	MatchData
	General description
	Direct superclass
	Instance methods
	MatchData#[]
	MatchData#begin
	MatchData#captures
	MatchData#end
	MatchData#initialize_copy
	MatchData#length
	MatchData#offset
	MatchData#post_match
	MatchData#pre_match
	MatchData#size
	MatchData#string
	MatchData#to_a
	MatchData#to_s

	Proc
	General description
	Direct superclass
	Singleton methods
	Proc.new

	Instance methods
	Proc#[]
	Proc#arity
	Proc#call
	Proc#clone
	Proc#dup

	Struct
	General description
	Direct superclass
	Singleton methods
	Struct.new

	Instance methods
	Struct#==
	Struct#[]
	Struct#[]=
	Struct#each
	Struct#each_pair
	Struct#initialize
	Struct#initialize_copy
	Struct#members
	Struct#select

	Time
	General description
	Direct superclass
	Time computation
	Day
	Year
	Month
	Days of month
	Hours, Minutes, and Seconds

	Time zone and Local time
	Daylight saving time
	Singleton methods
	Time.at
	Time.gm
	Time.local
	Time.mktime
	Time.now
	Time.utc

	Instance methods
	Time#<=>
	Time#+
	Time#-
	Time#asctime
	Time#ctime
	Time#day
	Time#dst?
	Time#getgm
	Time#getlocal
	Time#getutc
	Time#gmt?
	Time#gmt_offset
	Time#gmtime
	Time#gmtoff
	Time#hour
	Time#initialize
	Time#initialize_copy
	Time#localtime
	Time#mday
	Time#min
	Time#mon
	Time#month
	Time#sec
	Time#to_f
	Time#to_i
	Time#usec
	Time#utc
	Time#utc?
	Time#utc_offset
	Time#wday
	Time#yday
	Time#year
	Time#zone

	IO
	General description
	Direct superclass
	Included modules
	Singleton methods
	IO.open

	Instance methods
	IO#close
	IO#closed?
	IO#each
	IO#each_byte
	IO#each_line
	IO#eof?
	IO#flush
	IO#getc
	IO#gets
	IO#initialize_copy
	IO#print
	IO#putc
	IO#puts
	IO#read
	IO#readchar
	IO#readline
	IO#readlines
	IO#sync
	IO#sync=
	IO#write

	File
	General description
	Direct superclass
	Singleton methods
	File.exist?

	Instance methods
	File#initialize
	File#path

	Exception
	General description
	Direct superclass
	Singleton methods
	Exception.exception

	Instance methods
	Exception#exception
	Exception#initialize
	Exception#message
	Exception#to_s

	StandardError
	General description
	Direct superclass

	ArgumentError
	General description
	Direct superclass

	LocalJumpError
	Direct superclass
	Instance methods
	LocalJumpError#exit_value
	LocalJumpError#reason

	RangeError
	General description
	Direct superclass

	RegexpError
	General description
	Direct superclass

	RuntimeError
	General description
	Direct superclass

	TypeError
	General description
	Direct superclass

	ZeroDivisionError
	General description
	Direct superclass

	NameError
	Direct superclass
	Instance methods
	NameError#initialize
	NameError#name

	NoMethodError
	Direct superclass
	Instance methods
	NoMethodError#args
	NoMethodError#initialize

	IndexError
	General description
	Direct superclass

	IOError
	General description
	Direct superclass

	EOFError
	General description
	Direct superclass

	SystemCallError
	General description
	Direct superclass

	ScriptError
	General description
	Direct superclass

	SyntaxError
	General description
	Direct superclass

	LoadError
	General description
	Direct superclass

	Built-in modules
	Kernel
	General description
	Singleton methods
	Kernel.`
	Kernel.block_given?
	Kernel.eval
	Kernel.global_variables
	Kernel.iterator?
	Kernel.lambda
	Kernel.local_variables
	Kernel.loop
	Kernel.p
	Kernel.print
	Kernel.puts
	Kernel.raise
	Kernel.require

	Instance methods
	Kernel#==
	Kernel#===
	Kernel#`
	Kernel#__id__
	Kernel#__send__
	Kernel#block_given?
	Kernel#class
	Kernel#clone
	Kernel#dup
	Kernel#eql?
	Kernel#equal?
	Kernel#eval
	Kernel#extend
	Kernel#global_variables
	Kernel#hash
	Kernel#initialize_copy
	Kernel#inspect
	Kernel#instance_eval
	Kernel#instance_of?
	Kernel#instance_variable_defined?
	Kernel#instance_variable_get
	Kernel#instance_variable_set
	Kernel#instance_variables
	Kernel#is_a?
	Kernel#iterator?
	Kernel#kind_of?
	Kernel#lambda
	Kernel#local_variables
	Kernel#loop
	Kernel#method_missing
	Kernel#methods
	Kernel#nil?
	Kernel#object_id
	Kernel#p
	Kernel#print
	Kernel#private_methods
	Kernel#protected_methods
	Kernel#public_methods
	Kernel#puts
	Kernel#raise
	Kernel#remove_instance_variable
	Kernel#require
	Kernel#respond_to?
	Kernel#send
	Kernel#singleton_methods
	Kernel#to_s

	Enumerable
	General description
	Instance methods
	Enumerable#all?
	Enumerable#any?
	Enumerable#collect
	Enumerable#detect
	Enumerable#each_with_index
	Enumerable#entries
	Enumerable#find
	Enumerable#find_all
	Enumerable#grep
	Enumerable#include?
	Enumerable#inject
	Enumerable#map
	Enumerable#max
	Enumerable#member?
	Enumerable#min
	Enumerable#partition
	Enumerable#reject
	Enumerable#select
	Enumerable#sort
	Enumerable#to_a

	Comparable
	General description
	Instance methods
	Comparable#<
	Comparable#<=
	Comparable#>
	Comparable#>=
	Comparable#==
	Comparable#between?

