BS 8539:2012+A1:2021

BSI Standards Publication

Code of practice for the selection and installation of post-installed anchors in concrete and masonry

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2021

Published by BSI Standards Limited 2021

ISBN 978 0 539 13927 3

ICS 91.080.40 | 21.060.99

The following BSI references relate to the work on this document: Committee reference B/514 Drafts for comment 12/30215639 DC, 20/30420416 DC

Amendments/corrigenda issued since publication

Date	Text affected
31 March 2021	A1: see Foreword

© THE BRITISH STANDA

Conte	Contents	
	Foreword	iv
	Introduction	1
	Figure 1 — Flowchart for overall process of selection and installation of anchors	2
1	Scope	2
2	Normative references	2
3	Terms, definitions and symbols	3
4	Roles and responsibilities	11
4.1	Manufacturer/supplier	11
4.2	Designer	12
4.3	Specifier	12
4.4	Contractor	12
4.5	Installer	13
4.6	Supervisor	13
4.7	Tester	13
5	Selection and specification of anchors	13
	Figure 2 — Flowchart for selection process	14
5.1	Information to be assembled	14
5.2	Preliminary design considerations	15
5.3	Factors determining anchor type	16
	Figure 3 — Characteristic and minimum edge and spacing dimensions	19
	Figure 4 — The relationship between embedment depth and concrete cone failure	19
	Figure 5 — General anchor positioning guidance in brickwork	22
	Figure 6 — Anchor positioning for fixing anchors in joints	22
	Figure 7 — Locations in joints for test anchors when anchors are to be installed through render	
	or plaster	23
	Figure 8 — Embedment and hole depths in brickwork	23
	Figure 9 — Tensile, shear and combined actions	25
	Figure 10 — Example of a bending action	25
	Figure 11 — Example of a compressive action	26
	Table 1 — Anchor materials used to minimize the risk of corrosion	27
5.4	Factors determining anchor size	30
5.5	Completing the specification	31
6	Information to be provided by manufacturer/supplier, designer and specifier	31
6.1	General	31
6.2	Information to be provided by the manufacturer/supplier to the specifier	31
6.3	Information to be provided by the designer to the specifier	32
6.4	Information to be provided by the specifier to the contractor/installer	32
6.5	Information to be provided by the manufacturer/supplier to the contractor/installer	33
6.6	Information to be provided by the specifier to the tester	33
7	Installation of anchors	34
7.1	General	34
7.2	Installation procedures	34
7.3	Aspects of installation	35
	Figure 12 — Hole depths	35
	Figure 13 — Embedment depths	36
7.4	Strength of concrete at the time of installation	37
7.5	Hitting reinforcement	38
7.6	Installing anchors in masonry	38

8	Supervision, inspection and certification of installed anchors	39
8.1	Supervision	39
8.2	Inspection	39
8.3	Certification	40
9	Testing of anchors	40
9.1	General	40
9.2	Tests to determine the allowable resistance	40
9.3	Tests to check the quality of installation	41
9.4	Testing in tension and shear	41
9.5	Test procedures and recording of results	42
10	Change management – alternative anchors	42
Annex A	(informative) Design methods	43
	Figure A.1 — Comparison between load levels of partial and global safety factor approaches	44
	Figure A.2 — Relationship of resolved components of combined action to design resistance at	
	angles between tension and shear – PSF approach	47
	Figure A.3 — Interaction diagram for combined tensile and shear actions according to	
	BS EN 1992-4	48
Annex B	(normative) Site testing regimes	49
	Table B.1 — Factors used in preliminary tests	51
	Figure B.1 — Preliminary tests - relationship between characteristic action and test load	52
	Figure B.2 — Illustration of tests when one anchor fails to reach N_{test}	53
	Figure B.3 — Illustration of test results when all anchors have been loaded to failure	53
	Figure B.4 — Illustration of treatment of results to determine allowable resistance	54
Annex C	(informative) Types of anchors	58
	Figure C.1 — Relationship between bolt tension, clamping force and service action	58
	Figure C.2 — Throughbolt type of expansion anchor	59
	Figure C.3 — Thick-walled sleeve anchor	59
	Figure C.4 — Thin-walled sleeve anchor	59
	Figure C.5 — Shield type expansion anchor	59
	Figure C.6 — Undercut anchor, undercut pre-formed during drilling process	59
	Figure C.7 — Self-undercutting anchor	59
	Figure C.8 — Self-tapping screw type anchor	60
	Figure C.9 — Deformation-controlled expansion anchor	60
	Figure C.10 — Drop-in type anchor with expander plug driven fully to the base of the anchor	60
	Figure C.11 — Diagram illustrating mechanical interlock between resin of bonded anchor and	
	base material	61
	Figure C.12 — Bonded anchor with threaded anchor rod	61
	Figure C.13 — Bonded anchor with internally threaded socket	61
	Figure C.14 — Post-installed rebar anchors (starter bars) installed using injection resin systems	61
	Figure C.15 — Torque-controlled bonded anchor	62
	Figure C.16 — Traditional glass "spin-in" resin capsule	62
	Figure C.17 — Foil or soft skin type "spin-in" resin capsule	62
	Figure C.18 — Injection cartridge	63
	Figure C.19 — Force-controlled expansion anchor for suspended ceilings	64
	Figure C.20 — Deformation-controlled expansion anchor for suspended ceilings – all steel	
	components	64
	Figure C.21 — Traditional plastic plug	65
	Figure C.22 — Frame fixing	65
	Figure C.23 — Plastic plug with screw-in eye	65

	Figure C.24 — Bonded anchor used in single skin brickwork, solid brick	66
	Figure C.25 — Bonded anchor used in single skin brickwork, perforated brick, using mesh sleeve to control resin loss in voids	66
	Figure C.26 — Bonded anchor used in solid double skin (not cavity) brickwork using steel mesh	
	sleeve to control resin loss in gap between bricks	66
	Figure C.27 — Special injection anchor with outward tapering hole for use in aerated concrete	66
Annex D	(informative) Selection process for anchors with and without ETAs	67
	Figure D.1 — Flow chart for process of determining anchor usage in relation to ETAs in concrete	68
	Figure D.2 — Flow chart for process of determining anchor usage in relation to ETAs in masonry	69
Annex E	(informative) Static and non-static actions	70
Annex F	(informative) Types of corrosion	71
	Table F.1 — Galvanic effect on the rate of corrosion of anchors and fixtures in rural or urban areas	71
	Bibliography	74
	Index	77

Summary of pages

This document comprises a front cover, and inside front cover, pages i to vi, pages 1 to 81, an inside back cover and a back cover.

Foreword

Publishing information

This British Standard is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 October 2012. It was prepared by Technical Committee B/514, *Access and support equipment*. A list of organizations represented on this committee can be obtained on request to the committee manager.

Supersession

BS 8539:2012+A1:2021 supersedes BS 8539:2012, which is withdrawn.

Information about this document

This British Standard is intended to be used by a wide range of people involved in the selection and installation of anchors, and some clauses are of particular interest to specific parties, as follows:

- all parties: <u>Clause 3</u> and <u>Clause 4</u>;
- designers: <u>Clause 5</u>, <u>6.3</u> and <u>Clause 10</u>;
- specifiers: <u>Clause 5</u>, <u>6.4</u>, <u>6.6</u>, <u>Clause 9</u>, <u>Clause 10</u>, <u>Annex A</u>, <u>Annex B</u>, <u>Annex C</u> and <u>Annex D</u>;
- manufacturers/suppliers: <u>Clause 5</u>, <u>6.2</u>, <u>6.5</u> and <u>Clause 10</u>;
- contractors: <u>Clause 7</u>, <u>Clause 8</u> and <u>10</u>;
- installers: <u>Clause 7</u> and <u>Clause 10</u>;
- testers: <u>Clause 9</u> and <u>Annex B</u>.

It is recommended that all parties read the whole document.

Text introduced or altered by Amendment No.1 is indicated in the text by the tags A_1 (A1. Minor editorial changes are not tagged.

Amendment A1 introduces the following principal changes:

- the change in the anchor design method from ETAG001 in BS EN 1992-4:2018, Annex C;
- changes to ensure consistency with the Construction Product Regulations [3];
- replacing references to European Technical Approval Guidelines (ETAGs) with the relevant European Assessment Documents (EADs) references;
- updating other references, including associated terminology.

Product certification/inspection/testing. Users of this British Standard are advised to consider the desirability of selecting anchors with a relevant European Technical A) Assessment (ETA)¹⁾. ETAs are awarded by Approval Bodies after a comprehensive test and assessment regime carried out to the relevant A) European Assessment Document (EAD) A or Common Understanding of Assessment Procedure (CUAP), which also contain appropriate conformity attestation arrangements. Users seeking assistance in identifying appropriate conformity assessment bodies or schemes may ask BSI to forward their enquiries to the relevant association.

NOTE Anchors with ETAs, depending on the particular A EAD A and options within it, can be designed to suit a wide range of application conditions (see <u>Clause 5</u> and <u>Annex A</u>). Guidance on ETAs is given in ETAs and design methods for anchors used in construction [1] and the EOTA website (<u>www.eota.be</u>).

 A_1 Text deleted. A_1

1)

This publication can be withdrawn, revised, partially superseded or superseded. Information regarding the status of this publication can be found in the Standards Catalogue on the BSI website at <u>bsigroup.com/standards</u>, or by contacting the Customer Services team.

Where websites and webpages have been cited, they are provided for ease of reference and are correct at the time of publication. The location of a webpage or website, or its contents, cannot be guaranteed.

Use of this document

As a code of practice, this British Standard takes the form of guidance and recommendations. It should not be quoted as if it were a specification and particular care should be taken to ensure that claims of compliance are not misleading.

Any user claiming compliance with this British Standard is expected to be able to justify any course of action that deviates from its recommendations.

It has been assumed in the preparation of this British Standard that the execution of its provisions will be entrusted to appropriately qualified and experienced people, for whose use it has been produced.

Presentational conventions

The provisions in this standard are presented in roman (i.e. upright) type. Its recommendations are expressed in sentences in which the principal auxiliary verb is "should".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Where words have alternative spellings, the preferred spelling of the Shorter Oxford English Dictionary is used (e.g. "organization" rather than "organisation").

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

In particular, attention is drawn to the Construction Products Regulations 1991 [3] and Construction Products (Amendment) Regulations 1994 [4].

Introduction

Anchors play an important role in construction, in particular:

- a) they allow for the secure attachment of a fixture, which can be a structural element, to the base material;
- b) there is a wide variety of anchors available for different applications.

Every anchorage has three elements:

- anchor: the device that fastens the fixture to the base material;
- base material: the material into which the anchor is installed;
- fixture: the item to be fixed to the base material.

The performance of anchors is influenced by many application parameters, which need to be taken into account in their selection. Performance is also affected by the quality of installation.

If anchors are not selected and installed correctly, they might not have the capability to resist loads as intended. The security of the fixture and, in some cases, the structure might then be compromised, leading to failure with consequential economic loss, injury, or even death. This British Standard is intended to facilitate all stakeholders involved in the use of anchors to achieve the security required by the design.

<u>Figure 1</u> shows a simple outline of the overall approach to be taken to ensure that connections are safe and that they meet the overall design requirements.

Figure 1 — Flowchart for overall process of selection and installation of anchors

1 Scope

This British Standard gives recommendations for the safe selection and installation of anchors for use in concrete and masonry. It is intended to provide practical guidance for designers, specifiers, manufacturers, suppliers, contractors, installers and testers of anchors.

In particular, this British Standard applies to the selection and installation of anchors which are used in safety-critical applications.

This British Standard is restricted to the use of anchors which are inserted into concrete and masonry in drilled holes.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

[N1] CONSTRUCTION FIXINGS ASSOCIATION. *Procedure for site testing construction fixings – 2012*. CFA Guidance Note. (A1) Thurmaston (A1, Leicestershire: CFA, 2012.