BS 9295:2020

BSI Standards Publication

Guide to the structural design of buried pipes

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2020

Published by BSI Standards Limited 2020

ISBN 978 0 580 98319 1

ICS 23.040.01; 93.030

The following BSI references relate to the work on this document:

Committee reference B/505

Draft for comment 19/30359667 DC

Amendments/corrigenda issued since publication

Date Text affected

© THE BRITISH STANDA

This is a preview. Click here to purchase the full publication.

Contents		Page
	Foreword	iv
0	Introduction	1
1	Scope	1
2	Normative references	1
3	Terms, definitions and symbols	2
4	Concepts used in the structural design of buried pipes	6
4.1	The buried pipe system	6
4.2	Longitudinal and sectional behaviour	6
4.3	Classification of buried pipes	6
	Figure 1 — Design criteria for pipes laid in open trench	7
	Table 1 — Pipe classification	7
	Figure 2 — Rigid and flexible pipe behaviour	8
4.4	Design models	8
	Figure 3 — Soil pressure changes immediately after pipe burial	9
4.5	Short-term and long-term stiffness characteristics of polymeric pipe materials	11
4.6	Classification of native/embedment soils and trench width	13
	Figure 4 — Effective trench width, $B_{\rm d}$	13
4.7	Key parameters to be specified by the designer	13
4.8	Pipe and design method selection	14
	Figure 5 — Clauses applicable to the selection and design of pipe	14
5	Classification and calculation of loads	14
5.1	Introduction	14
5.2	Vehicle surcharge loads	15
	Figure 6 — Illustration of eccentric surcharge load on pipe	15
5.3	Road and field surcharge loads	15
	Figure 7 — Loading configurations	16
	Figure 8 — Example of calculated backfill, road traffic surcharge and combined loadings	
	expressed as a line load on a rigid DN 300 pipe	17
	Table 2 — Surcharge pressures (kN/m ²), P_s , as function of depth of cover to crown, H	17
	Figure 9 — Surcharge pressure (kN/ m^2), P_s , due to vehicle wheels	18
5.4	Surcharge pressure due to construction vehicles	18
	Figure 10 — Surcharge pressure, P_s , due to construction vehicles	19
5.5	Railway loadings	19
	Figure 11 — Loading configurations for LM 71 and RL railway loading models	20
	Figure 12 — BS EN 1991-2:2003, load model 71 (α = 1.0) (RU to BS 5400-21) surcharge	
	pressure at depth	21
	Figure 13 — Rail London (RL to BS 5400-2) surcharge pressures at depth	22
	Figure 14 — Factor for calculating multi-track railway loadings	23
6	Rigid pipe design	23
	Figure 15 — Flowchart for pipe design with rigid pipes	24
6.1	General	24
6.2	Wide and narrow trenches	24
	Figure 16 — Effect of trench width, B_{d} , on calculated vertical backfill load on pipe	25
	Figure 17 — The silo effect	26
6.3	Complete and incomplete projection	26
	Figure 18 — Complete projection	27
	Figure 19 — Incomplete projection	27

6.4	Settlement deflection ratio, $r_{ m sd}$	28
	Figure 20 — Settlement deflection ratio	28
	Table 3 — Guide values of Spangler modulus for native soils, E'_3	29
6.5	Projection ratio, $ ho$	29
6.6	Soil properties	29
	Table 4 — Values of $K\mu$ and $K\mu'$ for specific soil types	29
6.7	Bedding factors	29
6.8	Crushing strength adjustments for pressure pipes	30
6.9	Minimum bedding factor and factor of safety	30
	Table 5 — Rigid pipe embedment	31
6.10	Design loads for rigid pipes	32
	Table 6 — Design bedding factors for pipes laid in wide trench and embankment conditions with	
	bedding classes B and S and outside diameter greater than or equal to 900 mm ^{A)}	32
	Table 7 — Load coefficients for incomplete projection condition	33
6.11	Supporting strength of rigid pipes	34
6.12	Factors of safety	35
	Table 8 — Minimum values of $F_{\rm se}$ and $F_{\rm si}$	35
6.13	Limit state design	35
	Table 9 — Design factors of actions	36
6.14	Design of egg-shaped pipes	36
	Figure 21 — Dimensions and bedding distribution cases for egg-shaped pipes	37
	Table 10 — Bending moment coefficients for egg-shaped pipes	38
6.15	Simplified bedding table for vitrified clay pipes	38
	Table 11 — Simplified table for the embedment of vitrified clay pipes in wide trench conditions	39
6.16	Simplified bedding table for concrete pipes	42
	Table 12 — Simplified bedding table for concrete pipes – Strength class 120	42
7	Flexible pipe design	44
7.1	General	44
7.2	Marston-Spangler method	44
	Figure 22A — Flowchart for pipe design: GRP pipes	45
	Figure 23B — Flowchart for pipe design: Steel pipes	46
	Figure 23C — Flowchart for pipe design: Thermoplastics pipes	47
	Table 13 — Guide values of Spangler modulus for native soils, ${E'}_{\scriptscriptstyle 3}$	48
	Table 14 — Semi-rigid and flexible pipe embedment properties	49
	Table 15 — Flexible pipe embedments	50
	Figure 23 — Deflection lag factor	51
	Table 16 — Design values of initial deflection, Δ_{o}/D	53
7.3	Gumbel method	55
	Figure 24 — Principal deformation modes of the buried pipe ring	56
	Figure 25 — External loads on the pipe-soil system	57
	Figure 26 — Components of load on the pipe-soil system	57
	Table 17 — M _{sb} values ^{A)}	59
	Table 18 — M _{sn} values	60
	Table 19 — Values of soil support combination factor, S_c	60
	Table 20 — K values for design	62
	Table 21 — Design values of initial deflection, $\delta_{_{y0}}$	65
	Table 22 — Values of δ_{y2} for design	66
	Figure 27 — Linear buckling modes	66
	Table 23 — Values of k_{sc} for design	67
8	Semi-rigid pipe design	69

8.1	General	70
	Figure 28 — Flowchart for design of semi-rigid pipes of ductile iron	70
8.2	Installation conditions	70
	Table 24 — Semi-rigid pipe embedments	71
	Table 25 — Semi-rigid and flexible pipe embedment properties	72
8.3	Design pressures for semi-rigid pipes	72
	Table 26 — Load coefficients for incomplete projection condition	73
	Figure 29 — Deflection lag factor	74
	Table 27 — Guide values of Spangler modulus for native soils, E'_3	75
8.4	Semi-rigid pipe embedment properties	75
8.5	Design data for semi-rigid pipes	76
8.6	Bedding for ductile iron pipes	76
	Table 28 — Embedment classes	77
8.7	Simplified bedding table for ductile iron pipes	77
	Table 29 — Safe depths of cover (m) for ductile iron water pipe with field surcharge	79
	Table 30 — Safe depths of cover (m) for ductile iron water pipe with main road surcharge	81
	Table 31 — Safe depths of cover (m) for ductile iron sewer pipe with field surcharge	83
	Table 32 — Safe depths of cover (m) for ductile iron sewer pipe with main road surcharge	85
Annex A	(informative) Other design considerations	87
	Figure A.1 — Soil loads and stresses produced by surface loads (after Fadum [13])	88
	Figure A.2 — Uniform surcharge U_s /unit area of limited extent in fixed position	89
	Figure A.3 — Pipe in tunnel, heading or jacked into place	90
	Figure A.4 — Multiple pipe trenches	92
	Figure A.5 — Uneven loading of multiple pipes laid in parallel	93
	Figure A.6 — Circumstances which can result in large lateral loads: Embankment	94
	Figure A.7 — Schematic of groundwater flotation forces	96
	Figure A.8 — Pipelines in poor ground	98
	Figure A.9 — Use of geotextile around pipe embedment	99
	Figure A.10 — Pipeline on piles	100
	Table A.1 — Recommended maximum length of rocker pipes	101
	Figure A.11 — Protection of a shallow pipeline using concrete surround	104
	Figure A.12 — Protection of shallow pipeline with a slab	105
	Figure A.13 — Plain and reinforced beddings and surrounds	107
	Figure A.14 — Pipework under a floor slab	108
	Figure A.15 — Pipework built in to the wall	109
	Figure A.16 — Pipework passing through the wall	109
	Table A.2 — Overview of limit state conditions to be checked for longitudinal effects	111
	Table A.3 — Compaction fractions for bedding materials	115
	Table A.4 — Gradings	116
	Table A.5 — Maximum recommended level of impurity (by mass)	116
	Table A.6 — Equation errors (percent)	118
	Bibliography	135

Summary of pages

This document comprises a front cover, and inside front cover, pages i to vi, pages 1 to 137, an inside back cover and a back cover.

Foreword

Publishing information

This British Standard is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 29 February 2020. It was prepared by Technical Committee B/505, *Wastewater engineering*. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession

This British Standard supersedes BS 9295:2010, which is withdrawn.

Relationship with other publications

This British Standard is complementary to BS EN 1295-1:2019 and PD CEN/TR 1295-2:2005.

BS EN 1295-1:2019 specifies general requirements for the structural design of buried pipes under various conditions of loading. Guidance is also given on the application of the nationally established methods of design declared by, and used in, CEN member countries at the time it was prepared. The established United Kingdom method is described as BS 9295.

PD CEN/TR 1295-2:2005 summarizes the nationally established methods of design made available to CEN. The United Kingdom method is described in **A.9**, which is consistent with BS EN 1295-1:1997.

This British Standard gives further information to facilitate in full the structural design of buried pipes under various conditions of loading using the established United Kingdom method; it does not alter any of the provisions of BS EN 1295-1:2019.

Information about this document

This is a full revision of the standard, and introduces the following principal changes:

- incorporation of the content of National Annex A to BS EN 1295:1997; and
- inclusion of the Gumbel method for the design of buried pipes.

This publication can be withdrawn, revised, partially superseded or superseded. Information regarding the status of this publication can be found in the Standards Catalogue on the BSI website at bsigroup.com/standards, or by contacting the Customer Services team.

Where websites and webpages have been cited, they are provided for ease of reference and are correct at the time of publication. The location of a webpage or website, or its contents, cannot be guaranteed.

Use of this document

As a guide, this British Standard takes the form of guidance and recommendations. It should not be quoted as if it were a specification or a code of practice.

Presentational conventions

The guidance in this standard is presented in roman (i.e. upright) type. Any recommendations are expressed in sentences in which the principal auxiliary verb is "should".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

Introduction

This revision of BS 9295 has been prepared to maintain alignment with BS EN 1295-1:2019, which now cites BS 9295 as the primary source of the methods accepted for the structural design of buried pipes in the UK. The opportunity has been taken to review various shortcomings in the earlier UK design methods, many of which have arisen due to changes in the nature of pipes over the period since those methods were originally published.

Changes from the methods previously published as BS EN 1295-1 and BS 9295 include the introduction of a new conceptual model for the design of buried flexible pipes focused on large-diameter structured-wall thermoplastics pipes, explicit consideration of the quality of workmanship envisaged during installation, non-circular shaped concrete pipes, and a wider range of bedding materials. Non-circular shaped pipes in materials other than concrete are not in common use in the UK so their design is not covered by this edition.

1 Scope

This British Standard gives the UK established method for the structural design of buried pipes under various conditions of loading. The procedures are explained, with tables listing the recommended design values for the appropriate variables in the design formulae, figures providing graphical information on vehicle surcharge loadings, and tables of rigid pipe bedding factors.

The scope of BS EN 1295-1:2019 is restricted to the structural design of water supply pipelines, drains and sewers, and other water industry pipelines, whether operating at atmospheric, greater or lesser pressure.

Some aspects of longitudinal effects are discussed (see Annex A), but this topic is not fully covered.

The initial selection of options for the pipe material involves consideration of matters beyond structural design and is outside the scope of this standard.

Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application¹⁾. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Standards publications

BS EN 545, Ductile iron pipes, fittings, accessories and their joints for water pipelines – Requirements

BS EN 598, Ductile iron pipes, fittings, accessories and their joints for sewerage applications – Requirements and test methods

BS EN 622-4, Fibreboards - Specifications - Part 4: Requirements for softboards

BS EN 1295-1:2019, Structural design of buried pipelines under various conditions of loading – Part 1: General requirements

BS EN 1610:2015, Construction and testing of drains and sewers

BS EN 1992-1-1:2004+A1:2014, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings

BS EN 13242:2002+A1:2007, Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction

Documents that are referred to in an informative manner are listed in the Bibliography.

Other publications

[N1] YOUNG, O.C. and M.P. O'REILLY. *A guide to design loadings for buried rigid pipes*. Transport and Road Research Laboratory, Department of Transport. London: HMSO, 1983, Second Impression 1987.

[N2] HIGHWAY AUTHORITIES AND UTILITIES COMMITTEE (HAUC). *New Roads and Street Works Act 1991. Specification for the reinstatement of openings in highways.* HAUC (UK), 2002.

[N3] WASTE AND RESOURCES ACTION PROGRAMME (WRAP). Quality Protocol: *Aggregates from inert waste. End of waste criteria for the production of aggregates from inert waste.*Banbury: WRAP. 2013.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this British Standard, the terms and definitions given in BS EN 1295-1:2019 and the following apply.

3.1.1 buried pipe system

composite structure comprising the pipe, its joints and the surrounding soil embedment

3.1.2 pipe-soil system

conceptual two-dimensional structural unit comprising the buried pipe and an annulus of the surrounding soil, including pipe embedment and native ground, which interact to resist applied external and internal loads and/or imposed deformations

NOTE The size of soil annulus varies according to the relative stiffness of the pipe and the soil.

3.2 Symbols

For the purposes of this British Standard, the following symbols apply.

NOTE The following table gives the units for the symbols, unless these are given as otherwise in the text.

Symbols	Description	Units A)
A	cross-sectional area of wall per unit length	mm ²
$B_{\rm c}$	outside diameter of pipe	m
B'_{c}	combined width of multiple pipes laid in parallel	m
B_{d}	effective width of trench	m
$C_{\rm c}$	soil load coefficient in embankment conditions	-
$C_{\rm d}$	soil load coefficient in narrow trench conditions	-
$C_{_{ m L}}$	soil modulus adjustment factor (Leonhardt's coefficient)	-
$C_{ m w}$	water load coefficient	-
$C_{\mathbf{u}}$	undrained compressive strength of cohesive soil	kPa
D	mean diameter of pipe (measured to neutral axis of wall)	m
$D_{ m f}$	strain factor	-
$D_{_{ m i}}$	internal diameter of the pipe	m
$D_{_{ m L}}$	deflection lag factor	-
$D_{\scriptscriptstyle m Lsr}$	deflection lag factor for semi-rigid pipes	-
D_{R}	reduction factor on long-term deflection due to internal pressure	-
E	flexural (Young's) modulus of elasticity of pipe material	-

Symbols	Description	Units A)
E_{h}	hoop tensile modulus of elasticity of pipe material	_
E_{p}	modulus of elasticity of pipe material	MPa
$E_{\mathtt{p}}^{*}$	plane strain modulus of pipe material	MPa
$E_{\rm p}$	creep modulus of elasticity of pipe at time <i>x</i>	MPa
$\stackrel{\hat{E'}}{}$	overall modulus of soil reaction	МРа
E'_2	embedment soil (Spangler) modulus	MN/m^2
E_3'	native soil (Spangler) modulus	MN/m ²
$F_{\rm b}$	buoyant force (destabilizing force)	kN/m
$F_{\rm d}$	downward force (stabilizing force)	kN/m
F_{m}	bedding factor	_
$F_{\rm s}$	factor of safety against buckling	_
$F_{\rm se}$	factor of safety for rigid pipe material (external load design)	_
$F_{\rm si}$	factor of safety for rigid pipe (internal pressure design)	_
$f_{\rm ctm}$	factored tensile stress due to bending	MPa
$f_{ m ctm:fl}$	factored flexural tensile stress due to bending	MPa
GWL	level of groundwater	_
Н	depth of cover to top of pipe	m
H_{e}	height of plane of equal settlement above top of pipe	m
HN	internal height	m
$H_{\rm w}$	height of water table above invert of the pipe	m
I .	second moment of area of the pipe wall per unit length	mm ⁴ /mm
I_{σ}	influence value for determination of soil stresses produced by surface loads	_
K	coefficient of lateral earth pressure	_
K_{a}	fully active value of <i>K</i>	_
K_{0}^{a}	at-rest value of K	_
$k_{\rm sc}$	shallow cover reduction factor on soil modulus	_
$K_{\rm x}$	deflection coefficient	_
$M_{_{ m H}}$	bending moment, vertical load (soil and external water)	_
$M_{\rm p}$	compacted density (modified Proctor density)	%
M_{s}^{p}	constrained soil modulus	MPa
$M_{\rm sh}$	constrained soil modulus of the pipe zone embedment	MPa
$M_{\rm sn}$	constrained modulus of native soil of the trench wall	MPa
$M_{ m Ult}$	total factored bending moment	kNm/m
$M_{\rm v}$	bending moment, horizontal load (soil and external water)	_
$m_{ m qh}$	bending moment coefficient for egg-shaped pipe, horitzontal	_
$m_{\rm qv}$	bending moment coefficient for egg-shaped pipe, vertical	_
N	ring thrust in pipe wall	kN/m
$N_{ m SPT}$	penetration resistance in blows per 300 mm from a standard penetration test (SPT)	-
$N_{_{ m v}}$	distortional component of ring thrust	kN/m
N _z	uniform component of ring thrust	kN/m
n	pipe-soil stiffness factor	_
$n_{\rm w}$	number of waves around circumference of pipe	_
P P	vertical pressure due to soil and surcharge	kN/m²