CISPR 16-2-1:2014+AMD1:2017 CSV © IEC 2017

NOTE 1 Facteur nominal de division en tension = 9,5 dB.

NOTE 2 Z_{cat} représente le réseau asymétrique exigé pour régler l'affaiblissement de conversion longitudinale (ACL) applicable.

NOTE 3 AVERTISSEMENT - En raison de la possibilité de résultats de mesurage erronés, ce réseau fictif asymétrique (AAN) ne peut pas être utilisé pour mesurer les émissions de mode commun sur des câbles à paires non blindées connectés à des accès de télécommunication utilisant moins de quatre paires symétriques non blindées.

Figure I.7 – Exemple de réseau fictif asymétrique (AAN) destiné à être utilisé avec quatre paires symétriques non blindées

NOTE Facteur nominal de division en tension = 9,5 dB.

Figure I.8 – Exemple de réseau fictif (AN) destiné à être utilisé avec des câbles coaxiaux, utilisant une bobine d'arrêt de mode commun interne créée par un enroulement bifilaire d'un conducteur central isolé et d'un conducteur de blindage isolé sur un noyau magnétique commun (par exemple, un tore en ferrite)

NOTE 1 Facteur nominal de division en tension = 9,5 dB.

NOTE 2 Un plus grand nombre de tores peut être nécessaire pour satisfaire entièrement aux exigences pour les réseaux fictifs (AN).

Figure I.9 – Exemple de réseau fictif (AN) destiné à être utilisé avec des câbles coaxiaux, utilisant une bobine d'arrêt de mode commun interne créée par un câble coaxial miniature (câble coaxial à blindage de cuivre plein semi-rigide ou à blindage miniature à double tresse) enroulé sur des tores en ferrite

NOTE Facteur nominal de division en tension = 9,5 dB.

Figure I.10 – Exemple de réseau fictif (AN) destiné à être utilisé avec des câbles blindés multiconducteur, utilisant une bobine d'arrêt de mode commun interne créée par un enroulement bifilaire de plusieurs conducteurs de signaux isolés et un conducteur de blindage isolé sur un noyau magnétique commun (par exemple, un tore en ferrite)

NOTE 1 Facteur nominal de division en tension = 9,5 dB.

NOTE 2 Un plus grand nombre de tores peut être nécessaire pour satisfaire entièrement aux exigences pour les réseaux fictifs (AN).

Figure I.11 – Exemple de réseau fictif (AN) destiné à être utilisé avec des câbles blindés multiconducteur, utilisant une bobine d'arrêt de mode commun interne créée par un enroulement d'un câble blindé multiconducteur sur des tores en ferrite

Bibliographie

- [1] CISPR 11:2003, Appareils industriels, scientifiques et médicaux (ISM) à fréquence radioélectrique – Caractéristiques de perturbations électromagnétiques – Limites et méthodes de mesure
- [2] CISPR 16-1-4:2010, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 14: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées
- [3] CISPR 16-2-3:2010, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques Partie 2-3: Méthodes de mesure des perturbations et de l'immunité Mesures des perturbations rayonnées
- [4] CISPR/TR 16-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports (disponible en anglais seulement)
- [5] CISPR 16-4-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-1: Uncertainties, statistics and limit modelling – Uncertainties in standardized EMC tests (disponible en anglais seulement)
- [6] CISPR/TR 16-4-3:2004, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-3: Uncertainties, statistics and limit modelling – Statistical considerations in the determination of EMC compliance of mass-produced products (disponible en anglais seulement)
- [7] IEC/TR 60083:2006, Prises de courant pour usages domestiques et analogues normalisées par les pays membres de l'IEC
- [8] IEC 60364-4 (toutes les sous-parties), *Low-voltage electrical installations Part 4: Protection for safety* (disponible en anglais seulement)
- [9] IEC 61000-4-6:2008, Compatibilité électromagnétique (CEM) Partie 4-6: Techniques d'essai et de mesure – Immunité aux perturbations conduites, induites par les champs radioélectriques
- [10] IEC 61010-1:2001, Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire Partie 1: Prescriptions générales
- [11] UIT-R Recommandation BS.468-4: *Mesure du niveau de tension des bruits audiofréquence en radiodiffusion sonore*
- [12] JCGM 200:2012, Vocabulaire international de métrologie Concepts fondamentaux et généraux et termes associés (VIM)

Edition 3.1 2017-06

FINAL VERSION

VERSION FINALE

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

BASIC EMC PUBLICATION PUBLICATION FONDAMENTALE EN CEM

Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-1: Methods of measurement of disturbances and immunity – Conducted disturbance measurements

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 2-1: Méthodes de mesure des perturbations et de l'immunité – Mesures des perturbations conduites

This is a preview. Click here to purchase the full publication.	

CONTENTS

FO	REWORD)		8		
1	Scope			10		
2	Normati	mative references				
3	Terms,	definition	s and abbreviations	10		
	3.1	Terms a	and definitions	10		
	3.2	Abbrevi	ations	17		
4	Types o	Types of disturbance to be measured				
	4.1	General		17		
	4.2	Types o	f disturbance	17		
	4.3	Detecto	r functions	18		
5	Connec	Connection of measuring equipment				
	5.1	General	l	18		
	5.2	Connec	Connection of ancillary equipment			
	5.3	Connec	tions to reference ground	18		
	5.4	Connec	tion between the EUT and the artificial network	20		
6	General	measure	ement requirements and conditions	21		
	6.1	General	l	21		
	6.2	Disturba	ance not produced by the equipment under test	21		
		6.2.1	General	21		
		6.2.2	Compliance testing	21		
	6.3	Measur	ement of continuous disturbance	21		
		6.3.1	Narrowband continuous disturbance	21		
		6.3.2	Broadband continuous disturbance	21		
		6.3.3	Use of spectrum analyzers and scanning receivers	22		
	6.4	EUT arr	angement and measurement conditions	22		
		6.4.1	EUT arrangement	22		
		6.4.2	Normal load conditions	24		
		6.4.3	Duration of operation	24		
		6.4.4	Running-in/warm-up time	24		
		6.4.5	Supply	25		
		6.4.6	Mode of operation	25		
		6.4.7	Operation of multifunction equipment	25		
		6.4.8	Determination of EUT arrangement(s) that maximize(s) emissions	25		
		6.4.9	Recording of measurement results	25		
	6.5	Interpre	tation of measuring results	25		
		6.5.1	Continuous disturbance	25		
		6.5.2	Discontinuous disturbance	26		
		6.5.3	Measurement of the duration of disturbances	26		
	6.6	Measurement times and scan rates for continuous disturbance		26		
		6.6.1	General	26		
		6.6.2	Minimum measurement times	26		
		6.6.3	Scan rates for scanning receivers and spectrum analyzers	27		
		6.6.4	Scan times for stepping receivers	28		
		6.6.5	Strategies for obtaining a spectrum overview using the peak detector	29		

CISPR 16-2-1:2014+AMD1:2017 CSV - 3 - © IEC 2017

		6.6.6	Timing considerations using FFT-based instruments	32	
7	Measur	ement of d	isturbances conducted along leads, 9 kHz to 30 MHz	34	
	7.1	General		34	
	7.2	Measurin	g equipment (receivers, etc.)	35	
		7.2.1	General	35	
		7.2.2	Use of detectors for conducted disturbance measurements	35	
	7.3	Ancillary	measuring equipment	35	
		7.3.1	General	35	
		7.3.2	Artificial networks (ANs)	35	
		7.3.3	Voltage probes	36	
		7.3.4	Current probes	36	
	7.4	Configura	ation of the EUT and method of measurement	37	
		7.4.1	Arrangement of the EUT and its connection to the AN	37	
		7.4.2	Procedure for the measurement of disturbance voltages with ANs	43	
		7.4.3	Measurement of common mode voltages at differential mode signal terminals	52	
		7.4.4	Measurements using voltage probes	53	
		7.4.5	Measurement using a capacitive voltage probe (CVP)	55	
		7.4.6	Measurements using current probes	55	
	7.5	System te	est configuration for conducted emissions measurements	56	
		7.5.1	General approach to system measurements	56	
		7.5.2	System configuration	56	
		7.5.3	Measurements of interconnecting lines	59	
		7.5.4	Decoupling of system components	59	
	7.6	In situ me	easurements	59	
		7.6.1	General	59	
		7.6.2	Reference ground	60	
		7.6.3	Measurement with voltage probes	60	
		7.6.4	Selection of measuring points	60	
8	Automa	ited measu	rement of disturbances	61	
	8.1	Precautio	ons for automating measurements	61	
	8.2	Generic r	neasurement procedure	61	
	8.3	Prescan ı	measurements	62	
	8.4	Data redu	uction	63	
	8.5	Disturbar	nce maximization and final measurement	63	
	8.6	Post processing and reporting			
	8.7	Disturbar instrumer	nce measurement strategies with FFT-based measuring hts	63	
9	Test set-up and measurement procedure using the CDNE in the frequency range 30 MHz to 300 MHz			64	
	9.1	General		64	
	9.2	Test set-u	up	64	
	9.3	Measurer	ment procedure	66	
Ann mai	iex A (inf ns netwo	ormative) ork	Guidelines for connection of electrical equipment to the artificial	68	
	A.1	General		68	
	A.2	Classifica	ation of the possible cases	68	
		A.2.1	Well-shielded but poorly filtered EUT (Figures A.1 and A.2)	68	

	A.2.2	Well-filtered but incompletely shielded EUT (Figures A.3 and A 4)	69
	A 2 3	Practical general case	03 69
Α3	Method c	of arounding	
A.4	Condition	ns of arounding	
7.1.1	A.4.1	General	
	A.4.2	Classification of typical testing conditions	72
A.5	Connecti	on of the AMN as a voltage probe	73
Annex B (inf	formative)	Use of spectrum analyzers and scanning receivers	75
B.1	General.	· · · · · · · · · · · · · · · · · · ·	75
B.2	Overload		75
B.3	Linearity	test	75
B.4	Selectivit	y	75
B.5	Normal r	esponse to pulses	75
B.6	Peak det	ection	75
B.7	Frequenc	cy scan rate	76
B.8	Signal in	terception	76
B.9	Average	detection	76
B.10	Sensitivit	iy	76
B.11	Amplitud	e accuracy	77
Annex C (in	formative)	Decision tree for use of detectors for conducted disturbance	
measureme	nts		78
Annex D (indetector	formative)	Scan rates and measurement times for use with the average	80
D.1	General.		80
D.2	Suppress	sion of impulsive disturbance	80
	D.2.1	General	80
	D.2.2	Suppression of impulsive disturbance by digital averaging	81
D.3	Suppress	sion of amplitude modulation	81
D.4	Measure disturbar	ment of slowly intermittent, unsteady or drifting narrowband	81
D.5	Recomm	ended procedure for automated or semi-automated	
Appay E (int	measure	Cuidelines for the improvement of the test est up with ANe	83
	ormative)	Guidelines for the improvement of the test set-up with ANS	04
E.1	In situ ve	rification of the AN impedance and voltage division factor	84
E.2	PE Choke	es and sheath current absorbers for the suppression of ground	87
Annex F (no	ormative) [Determination of suitability of spectrum analyzers for compliance	89
Annex G (in	formative)	Basic guidance for measurements on telecommunications ports	90
	Limito	Busic guidance for medsarements on telecommunications ports.	00
G.1 C.2	Combine	tion of current probe and capacitive voltage probe (CVP)	90 ۵۱
G.2 C.3	Basic ide	tion of current probe and capacitive voltage probe (CVP)	ا ت ۵۱
G.3 C.1	Combine	tion of current limit and voltage limit	וש כם
0.4 C 5		the TCM impedance with ferrites	۲۳ ۸۵
G.9	Forrito or	a the individual of with refines	94 ۵4
G.O Annov Ll /na		Specific guidance for conducted disturbance, macourements on	94
telecommun	ication por	ts	97

- 4 - CISPR 16-2-1:2014+AMD1:2017 CSV © IEC 2017

This is a preview. Click here to purchase the full publication.

H.1

CISPR 16-2-1:2014+AMD1:2017 CSV - 5 - © IEC 2017

H.2	Characteri	stics of AANs	98
H.3	Characteri	stics of current probe	99
H.4	Characteri	stics of capacitive voltage probe	99
H.5	Procedure	s for common mode measurements	99
	H.5.1	General	99
	H.5.2	Measurement procedure using AANs	99
	H.5.3	Measurement procedure using a 150 Ω load connected to the outside surface of the cable screen	100
	H.5.4	Measurement procedure using a combination of current probe and capacitive voltage probe	101
	H.5.5	Measurement of cable, ferrite and AE common mode impedance	102
Annex I (info	ormative) E	xamples of AANs and ANs for screened cables	104
Bibliography	·		113
Figure 1 – E and a sheath Figure 2 – M	xample of a n current ab leasuremen	recommended test set-up with PE chokes with three AMNs sorber on the RF cable	20
signal ("BB")	using multi	ple sweeps with maximum hold	29
Figure 3 – E	xample of a	timing analysis	30
Figure 4 – A	broadband	spectrum measured with a stepped receiver	31
Figure 5 – Ir sweeps with	ntermittent n maximum h	arrowband disturbances measured using fast short repetitive nold function to obtain an overview of the disturbance spectrum	32
Figure 6 – F	FT scan in s	segments	33
Figure 7 – F	requency re	solution enhanced by FFT-based measuring instrument	34
Figure 8 – III	lustration of	current I _{CCM}	37
Figure 9 – To on LV AC ma	est configur ains power	ation: table-top EUT for conducted disturbance measurements ports and on analogue/digital data ports	39
Figure 10 – <i>J</i> and b) horize	Arrangemer ontal RGP	nt of EUT and AMN at 40 cm distance, with a) vertical RGP	40
Figure 11 – (attached	Optional exa	ample test configuration for an EUT with only a power cord	40
Figure 12 –	Test configu	Iration: floor-standing equipment (see 7.4.1 and 7.5.2.3)	42
Figure 13 – 1 7.4.1 and 7.5	Example tes 5.2.3)	st configuration: floor-standing and table-top equipment (see	43
	,		

Figure 14 – Schematic of disturbance voltage measurement configuration (see also 7.5.2.3)	.46
Figure 15 – Equivalent circuit for measurement of unsymmetric disturbance voltage for safety-class I (grounded) EUT	.47
Figure 16 – Equivalent circuit for measurement of unsymmetric disturbance voltage for safety-class II (ungrounded) EUT	.49
Figure 17 – RC element for artificial hand	.50
Figure 18 – Portable electric drill with artificial hand	. 50
Figure 19 – Portable electric saw with artificial hand	.51
Figure 22 – Generic process to help reduce measurement time	.62
Figure 23 – Test set-up for measurement of an EUT with one cable	.65
Figure 24 – Test set-up for measurement of an EUT with two cables connected adjacent surfaces of the EUT	.66

Figure 25 – Test set-up for measurement of an EUT with two cables connected on the same surface of the EUT	66
Figure 26 – Test configuration: table-top EUT for conducted disturbance measurements on the LV AC mains and LV DC power port of a GCPC	41
Figure 27 – Typical arrangement for measurement of conducted disturbances at LV AC mains and DC power ports of floor standing equipment with an AMN and a Δ -AN used as voltage probes, and with a current probe	55
Figure A.1 – Basic schematic of well-shielded but poorly filtered EUT	68
Figure A.2 – Detail of well-shielded but poorly filtered EUT	69
Figure A.3 – Well-filtered but incompletely shielded EUT	69
Figure A.4 – Well-filtered but incompletely shielded EUT, with U_2 reduced to zero	69
Figure A.5 – Disturbance supply through shielded conductors	70
Figure A.6 – Disturbance supply through unshielded but filtered conductors	70
Figure A.7 – Disturbance supply through ordinary conductors	71
Figure A.8 – AMN configurations	73
Figure C.1 – Decision tree for optimizing speed of conducted disturbance measurements with peak, quasi-peak and average detectors	78
Figure D.1 – Weighting function of a 10 ms pulse for peak ("PK") and average detections with ("CISPR AV") and without ("AV") peak reading; meter time constant 160 ms	82
Figure D.2 – Weighting functions of a 10 ms pulse for peak ("PK") and average detections with ("CISPR AV") and without ("AV") peak reading; meter time constant 100 ms	82
Figure D.3 – Example of weighting functions (of a 1 Hz pulse) for peak ("PK") and average detections as a function of pulse width; meter time constant 160 ms	83
Figure D.4 – Example of weighting functions (of a 1 Hz pulse) for peak ("PK") and average detections as a function of pulse width; meter time constant 100 ms	83
Figure E.1 – Parallel resonance of enclosure capacitance and ground strap inductance	84
Figure E.2 – Connection of an AMN to RGP using a wide grounding sheet for low inductance grounding	85
Figure E.3 – Impedance measured with the arrangement of Figure E.2 both with reference to the front panel ground and to the grounding sheet	85
Figure E.4 – VDF in the configuration of Figure E.2 measured with reference to the front panel ground and to the grounding sheet	85
Figure E.5 – Arrangement showing the measurement grounding sheet (shown with dotted lines) when measuring the impedance with reference to RGP	86
Figure E.6 – Impedance measured with the arrangement of Figure E.5 with reference to the RGP	86
Figure E.7 – VDF measured with parallel resonances in the AMN grounding	86
Figure E.8 – Attenuation of a sheath current absorber measured in a 150 Ω test arrangement	87
Figure E.9 – Arrangement for the measurement of attenuation due to PE chokes and sheath current absorbers	88
Figure G.1 – Basic circuit for considering the limits with a defined TCM impedance of 150 Ω .	93
Figure G.2 – Basic circuit for the measurement with unknown TCM impedance	93
Figure G.3 – Impedance layout of the components used in Figure H.2	95

CISPR 16-2-1:2014+AMD1:2017 CSV - 7 - © IEC 2017

Figure G.4 – Basic test set-up to measure combined impedance of the 150 Ω and ferrites	96
Figure H.1 – Measurement set-up using an AAN	100
Figure H.2 – Measurement set-up using a 150 Ω load to the outside surface of the shield	101
Figure H.3 – Measurement set-up using current and capacitive voltage probes	102
Figure H.4 – Characterization set-up	103
Figure I.1 – Example AAN for use with unscreened single balanced pairs	104
Figure I.2 – Example AAN with high LCL for use with either one or two unscreened balanced pairs	105
Figure I.3 – Example AAN with high LCL for use with one, two, three, or four unscreened balanced pairs	106
Figure I.4 – Example AAN, including a 50 Ω source matching network at the voltage measuring port, for use with two unscreened balanced pairs	107
Figure I.5 – Example AAN for use with two unscreened balanced pairs	108
Figure I.6 – Example AAN, including a 50 Ω source matching network $$ at the voltage measuring port, for use with four unscreened balanced pairs	109
Figure I.7 – Example AAN for use with four unscreened balanced pairs	110
Figure I.8 – Example AN for use with coaxial cables, employing an internal common mode choke created by bifilar winding an insulated centre-conductor wire and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid).	111
Figure I.9 – Example AN for use with coaxial cables, employing an internal common mode choke created by miniature coaxial cable (miniature semi-rigid solid copper screen or miniature double-braided screen coaxial cable) wound on ferrite toroids	111
Figure I.10 – Example AN for use with multi-conductor screened cables, employing an internal common mode choke created by bifilar winding multiple insulated signal wires and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid).	112
Figure I.11 – Example AN for use with multi-conductor screened cables, employing an internal common mode choke created by winding a multi-conductor screened cable on ferrite toroids	112
Table 1 – Minimum scan times for the three CISPR bands with peak and quasi-peak detectors	27
Table 2 – Minimum measurement times for the four CISPR bands	27
Table A.2 – Testing conditions for types of EUTs – Screened cable	74
Table B.1 – Sweep time/frequency or fastest scan rate	76
Table D.1 – Pulse suppression factors and scan rates for a 100 Hz video bandwidth	81
Table D.2 – Meter time constants and the corresponding video bandwidths and maximum scan rates	82
Table F.1 – Maximum amplitude difference between peak and quasi-peak detected signals	89
Table G.1 – Summary of advantages and disadvantages of the methods described in the specific subclauses of Annex H	91
Table H.1 – Telecommunication port disturbance measurement procedure selection	97
Table H.2 – <i>a</i> LCL values	98